Abstract
In rapidly evolving molecules, such as animal mitochondrial DNA, mutations that delineate specific lineages may not be dispersed at sufficient rates to attain an equilibrium between genetic drift and gene flow. Here we predict conditions that lead to nonequilibrium geographic distributions of mtDNA lineages, test the robustness of these predictions and examine mtDNA data sets for consistency with our model. Under a simple isolation by distance model, the variance of an mtDNA lineage's geographic distribution is expected be proportional to its age. Simulation results indicated that this relationship is fairly robust. Analysis of mtDNA data from natural populations revealed three qualitative distributional patterns: (1) significant departure of lineage structure from equilibrium geographic distributions, a pattern exhibited in three rodent species with limited dispersal; (2) nonsignificant departure from equilibrium expectations, exhibited by two avian and two marine fish species with potentials for relatively long-distance dispersal; and (3) a progression from nonequilibrium distributions for younger lineages to equilibrium distributions for older lineages, a condition displayed by one surveyed avian species. These results demonstrate the advantages of considering mutation and genealogy in the interpretation of mtDNA geographic variation.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Avise J. C., Helfman G. S., Saunders N. C., Hales L. S. Mitochondrial DNA differentiation in North Atlantic eels: Population genetic consequences of an unusual life history pattern. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4350–4354. doi: 10.1073/pnas.83.12.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Avise J. C., Neigel J. E., Arnold J. Demographic influences on mitochondrial DNA lineage survivorship in animal populations. J Mol Evol. 1984;20(2):99–105. doi: 10.1007/BF02257369. [DOI] [PubMed] [Google Scholar]
- Avise J. C., Shapira J. F., Daniel S. W., Aquadro C. F., Lansman R. A. Mitochondrial DNA differentiation during the speciation process in Peromyscus. Mol Biol Evol. 1983 Dec;1(1):38–56. doi: 10.1093/oxfordjournals.molbev.a040301. [DOI] [PubMed] [Google Scholar]
- Ball R. M., Freeman S., James F. C., Bermingham E., Avise J. C. Phylogeographic population structure of Red-winged Blackbirds assessed by mitochondrial DNA. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1558–1562. doi: 10.1073/pnas.85.5.1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crow J. F., Aoki K. Group selection for a polygenic behavioral trait: estimating the degree of population subdivision. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6073–6077. doi: 10.1073/pnas.81.19.6073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felsenstein J. The theoretical population genetics of variable selection and migration. Annu Rev Genet. 1976;10:253–280. doi: 10.1146/annurev.ge.10.120176.001345. [DOI] [PubMed] [Google Scholar]
- Karl S. A., Avise J. C. Balancing selection at allozyme loci in oysters: implications from nuclear RFLPs. Science. 1992 Apr 3;256(5053):100–102. doi: 10.1126/science.1348870. [DOI] [PubMed] [Google Scholar]
- Lynch M., Crease T. J. The analysis of population survey data on DNA sequence variation. Mol Biol Evol. 1990 Jul;7(4):377–394. doi: 10.1093/oxfordjournals.molbev.a040607. [DOI] [PubMed] [Google Scholar]
- Nei M., Li W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269–5273. doi: 10.1073/pnas.76.10.5269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reeb C. A., Avise J. C. A genetic discontinuity in a continuously distributed species: mitochondrial DNA in the American oyster, Crassostrea virginica. Genetics. 1990 Feb;124(2):397–406. doi: 10.1093/genetics/124.2.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahata N., Palumbi S. R. Extranuclear differentiation and gene flow in the finite island model. Genetics. 1985 Feb;109(2):441–457. doi: 10.1093/genetics/109.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright S. Isolation by Distance. Genetics. 1943 Mar;28(2):114–138. doi: 10.1093/genetics/28.2.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
