Skip to main content
Genetics logoLink to Genetics
. 1994 Jan;136(1):333–341. doi: 10.1093/genetics/136.1.333

Possible Role of Natural Selection in the Formation of Tandem-Repetitive Noncoding DNA

W Stephan 1, S Cho 1
PMCID: PMC1205784  PMID: 8138169

Abstract

A simulation model of sequence-dependent amplification, unequal crossing over and mutation is analyzed. This model predicts the spontaneous formation of tandem-repetitive patterns of noncoding DNA from arbitrary sequences for a wide range of parameter values. Natural selection is found to play an essential role in this self-organizing process. Natural selection which is modeled as a mechanism for controlling the length of a nucleotide string but not the sequence itself favors the formation of tandem-repetitive structures. Two measures of sequence heterogeneity, inter-repeat variability and repeat length, are analyzed in detail. For fixed mutation rate, both inter-repeat variability and repeat length are found to increase with decreasing rates of (unequal) crossing over. The results are compared with data on micro-, mini- and satellite DNAs. The properties of minisatellites and satellite DNAs resemble the simulated structures very closely. This suggests that unequal crossing over is a dominant long-range ordering force which keeps these arrays homogeneous even in regions of very low recombination rates, such as at satellite DNA loci. Our analysis also indicates that in regions of low rates of (unequal) crossing over, inter-repeat variability is maintained at a low level at the expense of much larger repeat units (multimeric repeats), which are characteristic of satellite DNA. In contrast, the microsatellite data do not fit the proposed model well, suggesting that unequal crossing over does not act on these very short tandem arrays.

Full Text

The Full Text of this article is available as a PDF (960.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armour J. A., Wong Z., Wilson V., Royle N. J., Jeffreys A. J. Sequences flanking the repeat arrays of human minisatellites: association with tandem and dispersed repeat elements. Nucleic Acids Res. 1989 Jul 11;17(13):4925–4935. doi: 10.1093/nar/17.13.4925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bachmann L., Sperlich D. Gradual evolution of a specific satellite DNA family in Drosophila ambigua, D. tristis, and D. obscura. Mol Biol Evol. 1993 May;10(3):647–659. doi: 10.1093/oxfordjournals.molbev.a040029. [DOI] [PubMed] [Google Scholar]
  3. Charlesworth B., Langley C. H., Stephan W. The evolution of restricted recombination and the accumulation of repeated DNA sequences. Genetics. 1986 Apr;112(4):947–962. doi: 10.1093/genetics/112.4.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Excoffier L., Smouse P. E., Quattro J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992 Jun;131(2):479–491. doi: 10.1093/genetics/131.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Inglehearn C. F., Cooke H. J. A VNTR immediately adjacent to the human pseudoautosomal telomere. Nucleic Acids Res. 1990 Feb 11;18(3):471–476. doi: 10.1093/nar/18.3.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jeffreys A. J., MacLeod A., Tamaki K., Neil D. L., Monckton D. G. Minisatellite repeat coding as a digital approach to DNA typing. Nature. 1991 Nov 21;354(6350):204–209. doi: 10.1038/354204a0. [DOI] [PubMed] [Google Scholar]
  7. Laursen H. B., Jørgensen A. L., Jones C., Bak A. L. Higher rate of evolution of X chromosome alpha-repeat DNA in human than in the great apes. EMBO J. 1992 Jul;11(7):2367–2372. doi: 10.1002/j.1460-2075.1992.tb05300.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lindsley D. L., Sandler L. The genetic analysis of meiosis in female Drosophila melanogaster. Philos Trans R Soc Lond B Biol Sci. 1977 Mar 21;277(955):295–312. doi: 10.1098/rstb.1977.0019. [DOI] [PubMed] [Google Scholar]
  9. Lohe A. R., Hilliker A. J., Roberts P. A. Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. Genetics. 1993 Aug;134(4):1149–1174. doi: 10.1093/genetics/134.4.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mather K. Crossing over and Heterochromatin in the X Chromosome of Drosophila Melanogaster. Genetics. 1939 Apr;24(3):413–435. doi: 10.1093/genetics/24.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Riggins G. J., Lokey L. K., Chastain J. L., Leiner H. A., Sherman S. L., Wilkinson K. D., Warren S. T. Human genes containing polymorphic trinucleotide repeats. Nat Genet. 1992 Nov;2(3):186–191. doi: 10.1038/ng1192-186. [DOI] [PubMed] [Google Scholar]
  12. Royle N. J., Clarkson R. E., Wong Z., Jeffreys A. J. Clustering of hypervariable minisatellites in the proterminal regions of human autosomes. Genomics. 1988 Nov;3(4):352–360. doi: 10.1016/0888-7543(88)90127-9. [DOI] [PubMed] [Google Scholar]
  13. Savatier P., Trabuchet G., Chebloune Y., Faure C., Verdier G., Nigon V. M. Nucleotide sequence of the beta-globin genes in gorilla and macaque: the origin of nucleotide polymorphisms in human. J Mol Evol. 1987;24(4):309–318. doi: 10.1007/BF02134129. [DOI] [PubMed] [Google Scholar]
  14. Smith G. P. Evolution of repeated DNA sequences by unequal crossover. Science. 1976 Feb 13;191(4227):528–535. doi: 10.1126/science.1251186. [DOI] [PubMed] [Google Scholar]
  15. Stephan W. Recombination and the evolution of satellite DNA. Genet Res. 1986 Jun;47(3):167–174. doi: 10.1017/s0016672300023089. [DOI] [PubMed] [Google Scholar]
  16. Valdes A. M., Slatkin M., Freimer N. B. Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics. 1993 Mar;133(3):737–749. doi: 10.1093/genetics/133.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Walsh J. B. Persistence of tandem arrays: implications for satellite and simple-sequence DNAs. Genetics. 1987 Mar;115(3):553–567. doi: 10.1093/genetics/115.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Willard H. F. Chromosome-specific organization of human alpha satellite DNA. Am J Hum Genet. 1985 May;37(3):524–532. [PMC free article] [PubMed] [Google Scholar]
  19. Wolff R. K., Plaetke R., Jeffreys A. J., White R. Unequal crossingover between homologous chromosomes is not the major mechanism involved in the generation of new alleles at VNTR loci. Genomics. 1989 Aug;5(2):382–384. doi: 10.1016/0888-7543(89)90076-1. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES