Skip to main content
Genetics logoLink to Genetics
. 1994 Jan;136(1):87–91. doi: 10.1093/genetics/136.1.87

Formamide Sensitivity: A Novel Conditional Phenotype in Yeast

A Aguilera 1
PMCID: PMC1205795  PMID: 8138179

Abstract

Yeast mutants unable to grow in the presence of 3% formamide have been isolated in parallel with mutants sensitive to either 37° or 6% ethanol. The number of formamide-sensitive mutations that affect different genes that can be identified from yeast cells is at least as large as the number of thermosensitive or ethanol-sensitive mutations. These mutations are of two types: those that are sensitive to formamide, temperature and/or ethanol simultaneously; and those that are specific for formamide sensitivity and show no temperature or ethanol sensitivity phenotype. Those genes susceptible to giving rise to formamide-sensitive alleles include the structural gene for DNA ligase, CDC9, and the structural gene for arginine permease, CAN1. The results indicate that formamide sensitivity can be used as a novel conditional phenotype for mutations on both essential and nonessential genes. This work also confirms that ethanol-sensitivity can be used as a conditional phenotype to identify mutations in at least as many genes as those susceptible to temperature or formamide sensitive mutations.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilera A., Benítez T. Ethanol-sensitive mutants of Saccharomyces cerevisiae. Arch Microbiol. 1986 Jan;143(4):337–344. doi: 10.1007/BF00412799. [DOI] [PubMed] [Google Scholar]
  2. Bartel B., Varshavsky A. Hypersensitivity to heavy water: a new conditional phenotype. Cell. 1988 Mar 25;52(6):935–941. doi: 10.1016/0092-8674(88)90435-7. [DOI] [PubMed] [Google Scholar]
  3. EDGAR R. S., LIELAUSIS I. TEMPERATURE-SENSITIVE MUTANTS OF BACTERIOPHAGE T4D: THEIR ISOLATION AND GENETIC CHARACTERIZATION. Genetics. 1964 Apr;49:649–662. doi: 10.1093/genetics/49.4.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. GORDON J. A., JENCKS W. P. The relationship of structure to the effectiveness of denaturing agents for proteins. Biochemistry. 1963 Jan-Feb;2:47–57. doi: 10.1021/bi00901a011. [DOI] [PubMed] [Google Scholar]
  5. HOROWITZ N. H., LEUPOLD U. Some recent studies bearing on the one geneone enzyme hypothesis. Cold Spring Harb Symp Quant Biol. 1951;16:65–74. doi: 10.1101/sqb.1951.016.01.006. [DOI] [PubMed] [Google Scholar]
  6. Hartwell L. H. Macromolecule synthesis in temperature-sensitive mutants of yeast. J Bacteriol. 1967 May;93(5):1662–1670. doi: 10.1128/jb.93.5.1662-1670.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kohiyama M., Cousin D., Ryter A., Jacob F. Mutants thermosensibles d'Escherichia coli K 12. I. Isolement et caractérisation rapide. Ann Inst Pasteur (Paris) 1966 Apr;110(4):465–486. [PubMed] [Google Scholar]
  8. Matthews B. W., Weaver L. H., Kester W. R. The conformation of thermolysin. J Biol Chem. 1974 Dec 25;249(24):8030–8044. [PubMed] [Google Scholar]
  9. Moir D., Botstein D. Determination of the order of gene function in the yeast nuclear division pathway using cs and ts mutants. Genetics. 1982 Apr;100(4):565–577. doi: 10.1093/genetics/100.4.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pogliano K. J., Beckwith J. The Cs sec mutants of Escherichia coli reflect the cold sensitivity of protein export itself. Genetics. 1993 Apr;133(4):763–773. doi: 10.1093/genetics/133.4.763. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES