Abstract
The Drosophila Prat gene encodes phosphoribosylamidotransferase (PRAT), the enzyme that performs the first committed step of the de novo purine nucleotide biosynthesis pathway. Using information from amino acid sequence alignments of PRAT from other organisms, a polymerase chain reaction-based approach was employed to clone Prat. Amino acid sequence alignment of Drosophila PRAT with PRAT from bacteria, yeast, and vertebrates indicates that it is most identical (at least 60%) to the vertebrate PRATs. It shares putative amino-terminal propeptide and ironbinding domains seen only in Bacillus subtilis and vertebrate PRATs. Prat was localized to the right arm of chromosome 3 at polytene band 84E1-2. Owing to the fact that this region had been well characterized previously, Prat was localized to a 30-kilobase region between two deficiency break-points. By making the prediction that Prat would have a similar ``purine syndrome'' phenotype as mutations in the genes ade2 and ade3, which encode enzymes downstream in the pathway, five alleles of Prat were isolated. Three of the alleles were identified as missense mutations. A comparison of PRAT enzyme activity with phenotype in three of the mutants indicates that a reduction to 40% of the wild-type allele's activity is sufficient to cause the purine syndrome, suggesting that PRAT activity is limiting in Drosophila.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Argos P., Hanei M., Wilson J. M., Kelley W. N. A possible nucleotide-binding domain in the tertiary fold of phosphoribosyltransferases. J Biol Chem. 1983 May 25;258(10):6450–6457. [PubMed] [Google Scholar]
- Bairoch A. PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res. 1992 May 11;20 (Suppl):2013–2018. doi: 10.1093/nar/20.suppl.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker B. S., Wolfner M. F. A molecular analysis of doublesex, a bifunctional gene that controls both male and female sexual differentiation in Drosophila melanogaster. Genes Dev. 1988 Apr;2(4):477–489. doi: 10.1101/gad.2.4.477. [DOI] [PubMed] [Google Scholar]
- Becker M. A., Kim M. Regulation of purine synthesis de novo in human fibroblasts by purine nucleotides and phosphoribosylpyrophosphate. J Biol Chem. 1987 Oct 25;262(30):14531–14537. [PubMed] [Google Scholar]
- Cabot E. L., Beckenbach A. T. Simultaneous editing of multiple nucleic acid and protein sequences with ESEE. Comput Appl Biosci. 1989 Jul;5(3):233–234. doi: 10.1093/bioinformatics/5.3.233. [DOI] [PubMed] [Google Scholar]
- Cavener D. R., Ray S. C. Eukaryotic start and stop translation sites. Nucleic Acids Res. 1991 Jun 25;19(12):3185–3192. doi: 10.1093/nar/19.12.3185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988 Nov 25;16(22):10881–10890. doi: 10.1093/nar/16.22.10881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daignan-Fornier B., Fink G. R. Coregulation of purine and histidine biosynthesis by the transcriptional activators BAS1 and BAS2. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6746–6750. doi: 10.1073/pnas.89.15.6746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gavalas A., Dixon J. E., Brayton K. A., Zalkin H. Coexpression of two closely linked avian genes for purine nucleotide synthesis from a bidirectional promoter. Mol Cell Biol. 1993 Aug;13(8):4784–4792. doi: 10.1128/mcb.13.8.4784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grandoni J. A., Switzer R. L., Makaroff C. A., Zalkin H. Evidence that the iron-sulfur cluster of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase determines stability of the enzyme to degradation in vivo. J Biol Chem. 1989 Apr 15;264(11):6058–6064. [PubMed] [Google Scholar]
- Henikoff S., Keene M. A., Sloan J. S., Bleskan J., Hards R., Patterson D. Multiple purine pathway enzyme activities are encoded at a single genetic locus in Drosophila. Proc Natl Acad Sci U S A. 1986 Feb;83(3):720–724. doi: 10.1073/pnas.83.3.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henikoff S., Nash D., Hards R., Bleskan J., Woolford J. F., Naguib F., Patterson D. Two Drosophila melanogaster mutations block successive steps of de novo purine synthesis. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3919–3923. doi: 10.1073/pnas.83.11.3919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henikoff S. Unidirectional digestion with exonuclease III in DNA sequence analysis. Methods Enzymol. 1987;155:156–165. doi: 10.1016/0076-6879(87)55014-5. [DOI] [PubMed] [Google Scholar]
- Humphrey T., Proudfoot N. J. A beginning to the biochemistry of polyadenylation. Trends Genet. 1988 Sep;4(9):243–245. doi: 10.1016/0168-9525(88)90028-5. [DOI] [PubMed] [Google Scholar]
- Iwahana H., Oka J., Mizusawa N., Kudo E., Ii S., Yoshimoto K., Holmes E. W., Itakura M. Molecular cloning of human amidophosphoribosyltransferase. Biochem Biophys Res Commun. 1993 Jan 15;190(1):192–200. doi: 10.1006/bbrc.1993.1030. [DOI] [PubMed] [Google Scholar]
- Iwahana H., Yamaoka T., Mizutani M., Mizusawa N., Ii S., Yoshimoto K., Itakura M. Molecular cloning of rat amidophosphoribosyltransferase. J Biol Chem. 1993 Apr 5;268(10):7225–7237. [PubMed] [Google Scholar]
- Johnstone M. E., Nash D., Naguib F. N. Three purine auxotrophic loci on the second chromosome of Drosophila melanogaster. Biochem Genet. 1985 Aug;23(7-8):539–555. doi: 10.1007/BF00504289. [DOI] [PubMed] [Google Scholar]
- Keizer C., Nash D., Tiong S. Y. The adenosine 2 locus of Drosophila melanogaster: clarification of the map position and eye phenotype of the ade2 mutant. Biochem Genet. 1989 Jun;27(5-6):349–353. doi: 10.1007/BF00554169. [DOI] [PubMed] [Google Scholar]
- Makaroff C. A., Zalkin H., Switzer R. L., Vollmer S. J. Cloning of the Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase gene in Escherichia coli. Nucleotide sequence determination and properties of the plasmid-encoded enzyme. J Biol Chem. 1983 Sep 10;258(17):10586–10593. [PubMed] [Google Scholar]
- Maniatis T., Hardison R. C., Lacy E., Lauer J., O'Connell C., Quon D., Sim G. K., Efstratiadis A. The isolation of structural genes from libraries of eucaryotic DNA. Cell. 1978 Oct;15(2):687–701. doi: 10.1016/0092-8674(78)90036-3. [DOI] [PubMed] [Google Scholar]
- Martin D. W., Jr Radioassay for enzymic production of glutamate from glutamine. Anal Biochem. 1972 Mar;46(1):239–243. doi: 10.1016/0003-2697(72)90417-4. [DOI] [PubMed] [Google Scholar]
- Mei B. G., Zalkin H. Amino-terminal deletions define a glutamine amide transfer domain in glutamine phosphoribosylpyrophosphate amidotransferase and other PurF-type amidotransferases. J Bacteriol. 1990 Jun;172(6):3512–3514. doi: 10.1128/jb.172.6.3512-3514.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Messenger L. J., Zalkin H. Glutamine phosphoribosylpyrophosphate amidotransferase from Escherichia coli. Purification and properties. J Biol Chem. 1979 May 10;254(9):3382–3392. [PubMed] [Google Scholar]
- Meyer E., Switzer R. L. Regulation of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase activity by end products. J Biol Chem. 1979 Jun 25;254(12):5397–5402. [PubMed] [Google Scholar]
- Mäntsälä P., Zalkin H. Glutamine nucleotide sequence of Saccharomyces cerevisiae ADE4 encoding phosphoribosylpyrophosphate amidotransferase. J Biol Chem. 1984 Jul 10;259(13):8478–8484. [PubMed] [Google Scholar]
- Mösch H. U., Scheier B., Lahti R., Mäntsäla P., Braus G. H. Transcriptional activation of yeast nucleotide biosynthetic gene ADE4 by GCN4. J Biol Chem. 1991 Oct 25;266(30):20453–20456. [PubMed] [Google Scholar]
- Rolfes R. J., Hinnebusch A. G. Translation of the yeast transcriptional activator GCN4 is stimulated by purine limitation: implications for activation of the protein kinase GCN2. Mol Cell Biol. 1993 Aug;13(8):5099–5111. doi: 10.1128/mcb.13.8.5099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tiong S. Y., Keizer C., Nash D., Bleskan J., Patterson D. Drosophila purine auxotrophy: new alleles of adenosine 2 exhibiting a complex visible phenotype. Biochem Genet. 1989 Jun;27(5-6):333–348. doi: 10.1007/BF00554168. [DOI] [PubMed] [Google Scholar]
- Tiong S. Y., Nash D. Genetic analysis of the adenosine3 (Gart) region of the second chromosome of Drosophila melanogaster. Genetics. 1990 Apr;124(4):889–897. doi: 10.1093/genetics/124.4.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tso J. Y., Zalkin H., van Cleemput M., Yanofsky C., Smith J. M. Nucleotide sequence of Escherichia coli purF and deduced amino acid sequence of glutamine phosphoribosylpyrophosphate amidotransferase. J Biol Chem. 1982 Apr 10;257(7):3525–3531. [PubMed] [Google Scholar]
- Wada K., Aota S., Tsuchiya R., Ishibashi F., Gojobori T., Ikemura T. Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Res. 1990 Apr 25;18 (Suppl):2367–2411. doi: 10.1093/nar/18.suppl.2367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weng M. L., Zalkin H. Structural role for a conserved region in the CTP synthetase glutamine amide transfer domain. J Bacteriol. 1987 Jul;169(7):3023–3028. doi: 10.1128/jb.169.7.3023-3028.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wickens M. How the messenger got its tail: addition of poly(A) in the nucleus. Trends Biochem Sci. 1990 Jul;15(7):277–281. doi: 10.1016/0968-0004(90)90054-f. [DOI] [PubMed] [Google Scholar]
- Zalkin H., Dixon J. E. De novo purine nucleotide biosynthesis. Prog Nucleic Acid Res Mol Biol. 1992;42:259–287. doi: 10.1016/s0079-6603(08)60578-4. [DOI] [PubMed] [Google Scholar]
- Zhou G., Broyles S. S., Dixon J. E., Zalkin H. Avian glutamine phosphoribosylpyrophosphate amidotransferase propeptide processing and activity are dependent upon essential cysteine residues. J Biol Chem. 1992 Apr 15;267(11):7936–7942. [PubMed] [Google Scholar]
- Zhou G., Charbonneau H., Colman R. F., Zalkin H. Identification of sites for feedback regulation of glutamine 5-phosphoribosylpyrophosphate amidotransferase by nucleotides and relationship to residues important for catalysis. J Biol Chem. 1993 May 15;268(14):10471–10481. [PubMed] [Google Scholar]