Skip to main content
Genetics logoLink to Genetics
. 1994 Mar;136(3):721–730. doi: 10.1093/genetics/136.3.721

Insertion Sequence-Related Genetic Variation in Resting Escherichia Coli K-12

T Naas 1, M Blot 1, W M Fitch 1, W Arber 1
PMCID: PMC1205879  PMID: 7911771

Abstract

Bacterial subclones recovered from an old stab culture of Escherichia coli K-12 revealed a high degree of genetic diversity, which occurred in spite of a very reduced rate of propagation during storage. This conclusion is based on a pronounced restriction fragment length polymorphism (RFLP) detected upon hybridization with internal fragments of eight resident insertion sequences (IS). Genetic diversity was dependent on the IS considered and, in many cases, a clear consequence of IS transposition. IS5 was particularly active in the generation of variation. All subclones in which IS30 had been active testify to a burst of IS30 transposition. This was correlated with a loss of prototrophy and a reduced growth on rich media. A pedigree of the entire clone could be drawn from the RFLP patterns of the subclones. Out of 118 subclones analyzed, 68 different patterns were found but the putative ancestral population had disappeared. A few patterns were each represented by several subclones displaying improved fitness. These results offer insights into the role of IS elements in the plasticity of the E. coli genome, and they further document that enzyme-mediated DNA rearrangements do occur in resting bacterial cultures.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arber W., Iida S., Jütte H., Caspers P., Meyer J., Hänni C. Rearrangements of genetic material in Escherichia coli as observed on the bacteriophage P1 plasmid. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):1197–1208. doi: 10.1101/sqb.1979.043.01.136. [DOI] [PubMed] [Google Scholar]
  2. Bachmann B. J. Linkage map of Escherichia coli K-12, edition 8. Microbiol Rev. 1990 Jun;54(2):130–197. doi: 10.1128/mr.54.2.130-197.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Birkenbihl R. P., Vielmetter W. Complete maps of IS1, IS2, IS3, IS4, IS5, IS30 and IS150 locations in Escherichia coli K12. Mol Gen Genet. 1989 Dec;220(1):147–153. doi: 10.1007/BF00260869. [DOI] [PubMed] [Google Scholar]
  4. Blot M., Heitman J., Arber W. Tn5-mediated bleomycin resistance in Escherichia coli requires the expression of host genes. Mol Microbiol. 1993 Jun;8(6):1017–1024. doi: 10.1111/j.1365-2958.1993.tb01646.x. [DOI] [PubMed] [Google Scholar]
  5. Dalrymple B., Caspers P., Arber W. Nucleotide sequence of the prokaryotic mobile genetic element IS30. EMBO J. 1984 Sep;3(9):2145–2149. doi: 10.1002/j.1460-2075.1984.tb02104.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Doolittle W. F., Sapienza C. Selfish genes, the phenotype paradigm and genome evolution. Nature. 1980 Apr 17;284(5757):601–603. doi: 10.1038/284601a0. [DOI] [PubMed] [Google Scholar]
  7. Dykhuizen D. E., Hartl D. L. Selection in chemostats. Microbiol Rev. 1983 Jun;47(2):150–168. doi: 10.1128/mr.47.2.150-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Engler J. A., van Bree M. P. The nucleotide sequence and protein-coding capability of the transposable element IS5. Gene. 1981 Aug;14(3):155–163. doi: 10.1016/0378-1119(81)90111-6. [DOI] [PubMed] [Google Scholar]
  9. Ghosal D., Sommer H., Saedler H. Nucleotide sequence of the transposable DNA-element IS2. Nucleic Acids Res. 1979 Mar;6(3):1111–1122. doi: 10.1093/nar/6.3.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Green L., Miller R. D., Dykhuizen D. E., Hartl D. L. Distribution of DNA insertion element IS5 in natural isolates of Escherichia coli. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4500–4504. doi: 10.1073/pnas.81.14.4500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Guyer M. S. The gamma delta sequence of F is an insertion sequence. J Mol Biol. 1978 Dec 15;126(3):347–365. doi: 10.1016/0022-2836(78)90045-1. [DOI] [PubMed] [Google Scholar]
  12. Hall B. G. Adaptive evolution that requires multiple spontaneous mutations. I. Mutations involving an insertion sequence. Genetics. 1988 Dec;120(4):887–897. doi: 10.1093/genetics/120.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hartl D. L., Dykhuizen D. E., Berg D. E. Accessory DNAs in the bacterial gene pool: playground for coevolution. Ciba Found Symp. 1984;102:233–245. doi: 10.1002/9780470720837.ch15. [DOI] [PubMed] [Google Scholar]
  14. Hartl D. L., Sawyer S. A. Why do unrelated insertion sequences occur together in the genome of Escherichia coli? Genetics. 1988 Mar;118(3):537–541. doi: 10.1093/genetics/118.3.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Klaer R., Kühn S., Tillmann E., Fritz H. J., Starlinger P. The sequence of IS4. Mol Gen Genet. 1981;181(2):169–175. doi: 10.1007/BF00268423. [DOI] [PubMed] [Google Scholar]
  16. Kohara Y., Akiyama K., Isono K. The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell. 1987 Jul 31;50(3):495–508. doi: 10.1016/0092-8674(87)90503-4. [DOI] [PubMed] [Google Scholar]
  17. Kothary R. K., Jones D., Candido E. P. IS186: an Escherichia coli insertion element isolated from a cDNA library. J Bacteriol. 1985 Nov;164(2):957–959. doi: 10.1128/jb.164.2.957-959.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mittler J. E., Lenski R. E. New data on excisions of Mu from E. coli MCS2 cast doubt on directed mutation hypothesis. Nature. 1990 Mar 8;344(6262):173–175. doi: 10.1038/344173a0. [DOI] [PubMed] [Google Scholar]
  19. NOVICK A., SZILARD L. Experiments with the Chemostat on spontaneous mutations of bacteria. Proc Natl Acad Sci U S A. 1950 Dec;36(12):708–719. doi: 10.1073/pnas.36.12.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ohtsubo H., Ohtsubo E. Nucleotide sequence of an insertion element, IS1. Proc Natl Acad Sci U S A. 1978 Feb;75(2):615–619. doi: 10.1073/pnas.75.2.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Olasz F., Stalder R., Arber W. Formation of the tandem repeat (IS30)2 and its role in IS30-mediated transpositional DNA rearrangements. Mol Gen Genet. 1993 May;239(1-2):177–187. doi: 10.1007/BF00281616. [DOI] [PubMed] [Google Scholar]
  22. Pfeifer F., Blaseio U. Transposition burst of the ISH27 insertion element family in Halobacterium halobium. Nucleic Acids Res. 1990 Dec 11;18(23):6921–6925. doi: 10.1093/nar/18.23.6921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Raabe T., Jenny E., Meyer J. A selection cartridge for rapid detection and analysis of spontaneous mutations including insertions of transposable elements in Enterobacteriaceae. Mol Gen Genet. 1988 Dec;215(1):176–180. doi: 10.1007/BF00331322. [DOI] [PubMed] [Google Scholar]
  24. Rodriguez H., Snow E. T., Bhat U., Loechler E. L. An Escherichia coli plasmid-based, mutational system in which supF mutants are selectable: insertion elements dominate the spontaneous spectra. Mutat Res. 1992 Nov 16;270(2):219–231. doi: 10.1016/0027-5107(92)90133-m. [DOI] [PubMed] [Google Scholar]
  25. Sawyer S., Hartl D. Distribution of transposable elements in prokaryotes. Theor Popul Biol. 1986 Aug;30(1):1–16. doi: 10.1016/0040-5809(86)90021-3. [DOI] [PubMed] [Google Scholar]
  26. Schwartz E., Kröger M., Rak B. IS150: distribution, nucleotide sequence and phylogenetic relationships of a new E. coli insertion element. Nucleic Acids Res. 1988 Jul 25;16(14B):6789–6802. doi: 10.1093/nar/16.14.6789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sengstag C., Iida S., Hiestand-Nauer R., Arber W. Terminal inverted repeats of prokaryotic transposable element IS186 which can generate duplications of variable length at an identical target sequence. Gene. 1986;49(1):153–156. doi: 10.1016/0378-1119(86)90395-1. [DOI] [PubMed] [Google Scholar]
  28. Stalder R., Arber W. Characterization of in vitro constructed IS30-flanked transposons. Gene. 1989;76(2):187–193. doi: 10.1016/0378-1119(89)90159-5. [DOI] [PubMed] [Google Scholar]
  29. Timmerman K. P., Tu C. P. Complete sequence of IS3. Nucleic Acids Res. 1985 Mar 25;13(6):2127–2139. doi: 10.1093/nar/13.6.2127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Umeda M., Ohtsubo E. Four types of IS1 with differences in nucleotide sequence reside in the Escherichia coli K-12 chromosome. Gene. 1991 Feb 1;98(1):1–5. doi: 10.1016/0378-1119(91)90096-t. [DOI] [PubMed] [Google Scholar]
  31. Umeda M., Ohtsubo E. Mapping of insertion elements IS1, IS2 and IS3 on the Escherichia coli K-12 chromosome. Role of the insertion elements in formation of Hfrs and F' factors and in rearrangement of bacterial chromosomes. J Mol Biol. 1989 Aug 20;208(4):601–614. doi: 10.1016/0022-2836(89)90151-4. [DOI] [PubMed] [Google Scholar]
  32. Zambrano M. M., Siegele D. A., Almirón M., Tormo A., Kolter R. Microbial competition: Escherichia coli mutants that take over stationary phase cultures. Science. 1993 Mar 19;259(5102):1757–1760. doi: 10.1126/science.7681219. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES