Skip to main content
Genetics logoLink to Genetics
. 1994 Mar;136(3):879–886. doi: 10.1093/genetics/136.3.879

A Screen for Nonconditional Dauer-Constitutive Mutations in Caenorhabditis Elegans

E A Malone 1, J H Thomas 1
PMCID: PMC1205893  PMID: 8005442

Abstract

In Caenorhabditis elegans, formation of the developmentally arrested dauer larva is induced by high levels of a constitutively secreted pheromone. Synergy between two groups of incompletely penetrant dauer-constitutive (Daf-c) mutations has recently led to a proposal that these two groups of genes are partially redundant and function in two parallel pathways that regulate dauer formation. A possible weakness in this reasoning is that the mutations used to identify the synergy were specifically obtained as incompletely penetrant mutations. Here we use screens to identify new Daf-c alleles without any requirement for partial penetrance. Nevertheless, 22 of the 25 new mutations are incompletely penetrant mutations in 6 previously identified genes. Among these are mutations in daf-8 and daf-19, genes for which only one mutation had been previously identified. Also included in this group are three daf-1 alleles that do not exhibit the maternal rescue characteristic of other daf-1 alleles. Two of the 25 new mutations are fully penetrant and are alleles of daf-2, the one gene in which a fully penetrant mutation had been found earlier. Finally, one of the 25 new mutations is semidominant, temperature-sensitive, and identifies a new gene, daf-28. The results demonstrate that an incompletely penetrant Daf-c phenotype is characteristic of mutations in most Daf-c genes other than daf-2. This finding strengthens the hypothesis that a branched genetic pathway controls dauer formation.

Full Text

The Full Text of this article is available as a PDF (870.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert P. S., Brown S. J., Riddle D. L. Sensory control of dauer larva formation in Caenorhabditis elegans. J Comp Neurol. 1981 May 20;198(3):435–451. doi: 10.1002/cne.901980305. [DOI] [PubMed] [Google Scholar]
  2. Albert P. S., Riddle D. L. Mutants of Caenorhabditis elegans that form dauer-like larvae. Dev Biol. 1988 Apr;126(2):270–293. doi: 10.1016/0012-1606(88)90138-8. [DOI] [PubMed] [Google Scholar]
  3. Bargmann C. I., Horvitz H. R. Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science. 1991 Mar 8;251(4998):1243–1246. doi: 10.1126/science.2006412. [DOI] [PubMed] [Google Scholar]
  4. Georgi L. L., Albert P. S., Riddle D. L. daf-1, a C. elegans gene controlling dauer larva development, encodes a novel receptor protein kinase. Cell. 1990 May 18;61(4):635–645. doi: 10.1016/0092-8674(90)90475-t. [DOI] [PubMed] [Google Scholar]
  5. Golden J. W., Riddle D. L. A gene affecting production of the Caenorhabditis elegans dauer-inducing pheromone. Mol Gen Genet. 1985;198(3):534–536. doi: 10.1007/BF00332953. [DOI] [PubMed] [Google Scholar]
  6. Golden J. W., Riddle D. L. A pheromone-induced developmental switch in Caenorhabditis elegans: Temperature-sensitive mutants reveal a wild-type temperature-dependent process. Proc Natl Acad Sci U S A. 1984 Feb;81(3):819–823. doi: 10.1073/pnas.81.3.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Link C. D., Silverman M. A., Breen M., Watt K. E., Dames S. A. Characterization of Caenorhabditis elegans lectin-binding mutants. Genetics. 1992 Aug;131(4):867–881. doi: 10.1093/genetics/131.4.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Perkins L. A., Hedgecock E. M., Thomson J. N., Culotti J. G. Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev Biol. 1986 Oct;117(2):456–487. doi: 10.1016/0012-1606(86)90314-3. [DOI] [PubMed] [Google Scholar]
  9. Schierenberg E., Miwa J., von Ehrenstein G. Cell lineages and developmental defects of temperature-sensitive embryonic arrest mutants in Caenorhabditis elegans. Dev Biol. 1980 Apr;76(1):141–159. doi: 10.1016/0012-1606(80)90368-1. [DOI] [PubMed] [Google Scholar]
  10. Swanson M. M., Riddle D. L. Critical periods in the development of the Caenorhabditis elegans dauer larva. Dev Biol. 1981 May;84(1):27–40. doi: 10.1016/0012-1606(81)90367-5. [DOI] [PubMed] [Google Scholar]
  11. Thomas J. H., Birnby D. A., Vowels J. J. Evidence for parallel processing of sensory information controlling dauer formation in Caenorhabditis elegans. Genetics. 1993 Aug;134(4):1105–1117. doi: 10.1093/genetics/134.4.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES