Skip to main content
Genetics logoLink to Genetics
. 1994 Mar;136(3):887–902. doi: 10.1093/genetics/136.3.887

A Cis-Acting Locus That Promotes Crossing over between X Chromosomes in Caenorhabditis Elegans

A M Villeneuve 1
PMCID: PMC1205894  PMID: 8005443

Abstract

This study reports the characterization of a cis-acting locus on the Caenorhabditis elegans X chromosome that is crucial for promoting normal levels of crossing over specifically between the X homologs and for ensuring their proper disjunction at meiosis I. The function of this locus is disrupted by the mutation me8, which maps to the extreme left end of the X chromosome within the region previously implicated by studies of X;A translocations and X duplications to contain a meiotic pairing site. Hermaphrodites homozygous for a deletion of the locus (Df/Df) or heterozygous for a deletion and the me8 mutation (me8/Df) exhibit extremely high levels of X chromosome nondisjunction at the reductional division; this is correlated with a sharp decrease in crossing over between the X homologs as evidenced both by reductions in genetic map distances and by the presence of achiasmate chromosomes in cytological preparations of oocyte nuclei. Duplications of the wild-type region that are unlinked to the X chromosome cannot complement the recombination and disjunction defects in trans, indicating that this region must be present in cis to the X chromosome to ensure normal levels of crossing over and proper homolog disjunction. me8 homozygotes exhibit an altered distribution of crossovers along the X chromosome that suggests a defect in processivity along the X chromosome of an event that initiates at the chromosome end. Models are discussed in which the cis-acting locus deleted by the Dfs functions as a meiotic pairing center that recruits trans-acting factors onto the chromosomes to nucleate assembly of a crossover-competent complex between the X homologs. This pairing center might function in the process of homolog recognition, or in the initiation of homologous synapsis.

Full Text

The Full Text of this article is available as a PDF (3.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alani E., Padmore R., Kleckner N. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell. 1990 May 4;61(3):419–436. doi: 10.1016/0092-8674(90)90524-i. [DOI] [PubMed] [Google Scholar]
  2. Albertson D. G. Mapping chromosome rearrangement breakpoints to the physical map of Caenorhabditis elegans by fluorescent in situ hybridization. Genetics. 1993 May;134(1):211–219. doi: 10.1093/genetics/134.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Albertson D. G., Thomson J. N. Segregation of holocentric chromosomes at meiosis in the nematode, Caenorhabditis elegans. Chromosome Res. 1993 May;1(1):15–26. doi: 10.1007/BF00710603. [DOI] [PubMed] [Google Scholar]
  4. Ashley T. Nonhomologous synapsis of the sex chromosomes in the heteromorphic bivalents of two X-7 translocations in male mice: R5 and R6. Chromosoma. 1983;88(3):178–183. doi: 10.1007/BF00285617. [DOI] [PubMed] [Google Scholar]
  5. Baker B. S., Carpenter A. T., Esposito M. S., Esposito R. E., Sandler L. The genetic control of meiosis. Annu Rev Genet. 1976;10:53–134. doi: 10.1146/annurev.ge.10.120176.000413. [DOI] [PubMed] [Google Scholar]
  6. Broverman S. A., Meneely P. M. Meiotic mutants that cause a polar decrease in recombination on the X chromosome in Caenorhabditis elegans. Genetics. 1994 Jan;136(1):119–127. doi: 10.1093/genetics/136.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cao L., Alani E., Kleckner N. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell. 1990 Jun 15;61(6):1089–1101. doi: 10.1016/0092-8674(90)90072-m. [DOI] [PubMed] [Google Scholar]
  8. Carpenter A. T. Gene conversion, recombination nodules, and the initiation of meiotic synapsis. Bioessays. 1987 May;6(5):232–236. doi: 10.1002/bies.950060510. [DOI] [PubMed] [Google Scholar]
  9. Engebrecht J., Hirsch J., Roeder G. S. Meiotic gene conversion and crossing over: their relationship to each other and to chromosome synapsis and segregation. Cell. 1990 Sep 7;62(5):927–937. doi: 10.1016/0092-8674(90)90267-i. [DOI] [PubMed] [Google Scholar]
  10. Ferguson E. L., Horvitz H. R. Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans. Genetics. 1985 May;110(1):17–72. doi: 10.1093/genetics/110.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goldstein P. The synaptonemal complexes of Caenorhabditis elegans: pachytene karyotype analysis of male and hermaphrodite wild-type and him mutants. Chromosoma. 1982;86(4):577–593. doi: 10.1007/BF00330128. [DOI] [PubMed] [Google Scholar]
  12. Hawley R. S., Arbel T. Yeast genetics and the fall of the classical view of meiosis. Cell. 1993 Feb 12;72(3):301–303. doi: 10.1016/0092-8674(93)90108-3. [DOI] [PubMed] [Google Scholar]
  13. Hawley R. S. Chromosomal sites necessary for normal levels of meiotic recombination in Drosophila melanogaster. I. Evidence for and mapping of the sites. Genetics. 1980 Mar;94(3):625–646. doi: 10.1093/genetics/94.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Herman R. K., Kari C. K., Hartman P. S. Dominant X-chromosome nondisjunction mutants of Caenorhabditis elegans. Genetics. 1982 Nov;102(3):379–400. doi: 10.1093/genetics/102.3.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Herman R. K., Kari C. K. Recombination between small X chromosome duplications and the X chromosome in Caenorhabditis elegans. Genetics. 1989 Apr;121(4):723–737. doi: 10.1093/genetics/121.4.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Horvitz H. R., Brenner S., Hodgkin J., Herman R. K. A uniform genetic nomenclature for the nematode Caenorhabditis elegans. Mol Gen Genet. 1979 Sep;175(2):129–133. doi: 10.1007/BF00425528. [DOI] [PubMed] [Google Scholar]
  17. Kemphues K. J., Kusch M., Wolf N. Maternal-effect lethal mutations on linkage group II of Caenorhabditis elegans. Genetics. 1988 Dec;120(4):977–986. doi: 10.1093/genetics/120.4.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kleckner N., Padmore R., Bishop D. K. Meiotic chromosome metabolism: one view. Cold Spring Harb Symp Quant Biol. 1991;56:729–743. doi: 10.1101/sqb.1991.056.01.082. [DOI] [PubMed] [Google Scholar]
  19. Loidl J., Nairz K., Klein F. Meiotic chromosome synapsis in a haploid yeast. Chromosoma. 1991 May;100(4):221–228. doi: 10.1007/BF00344155. [DOI] [PubMed] [Google Scholar]
  20. Loidl J. The initiation of meiotic chromosome pairing: the cytological view. Genome. 1990 Dec;33(6):759–778. doi: 10.1139/g90-115. [DOI] [PubMed] [Google Scholar]
  21. Maguire M. P. A possible role for the synaptonemal complex in chiasma maintenance. Exp Cell Res. 1978 Mar 15;112(2):297–308. doi: 10.1016/0014-4827(78)90213-6. [DOI] [PubMed] [Google Scholar]
  22. Maguire M. P. The mechanism of meiotic homologue pairing. J Theor Biol. 1984 Feb 21;106(4):605–615. doi: 10.1016/0022-5193(84)90010-9. [DOI] [PubMed] [Google Scholar]
  23. Maguire M. P. The temporal sequence of synaptic initiation, crossing over and synaptic completion. Genetics. 1972 Mar;70(3):353–370. doi: 10.1093/genetics/70.3.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McKim K. S., Howell A. M., Rose A. M. The effects of translocations on recombination frequency in Caenorhabditis elegans. Genetics. 1988 Dec;120(4):987–1001. doi: 10.1093/genetics/120.4.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moens P. B., Ashton M. L. Synaptonemal complexes of normal and mutant yeast chromosomes (Saccharomyces cerevisiae). Chromosoma. 1985;91(2):113–120. doi: 10.1007/BF00294054. [DOI] [PubMed] [Google Scholar]
  26. Moens P. B. The fine structure of meiotic chromosome pairing in the triploid, Lilium tigrinum. J Cell Biol. 1969 Jan;40(1):273–279. doi: 10.1083/jcb.40.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Moses M. J., Poorman P. A. Synaptosomal complex analysis of mouse chromosomal rearrangements. II. Synaptic adjustment in a tandem duplication. Chromosoma. 1981;81(4):519–535. doi: 10.1007/BF00285847. [DOI] [PubMed] [Google Scholar]
  28. Nelson G. A., Roberts T. M., Ward S. Caenorhabditis elegans spermatozoan locomotion: amoeboid movement with almost no actin. J Cell Biol. 1982 Jan;92(1):121–131. doi: 10.1083/jcb.92.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nicklas R. B. Chromosome segregation mechanisms. Genetics. 1974 Sep;78(1):205–213. doi: 10.1093/genetics/78.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Padmore R., Cao L., Kleckner N. Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae. Cell. 1991 Sep 20;66(6):1239–1256. doi: 10.1016/0092-8674(91)90046-2. [DOI] [PubMed] [Google Scholar]
  31. Roeder G. S. Chromosome synapsis and genetic recombination: their roles in meiotic chromosome segregation. Trends Genet. 1990 Dec;6(12):385–389. doi: 10.1016/0168-9525(90)90297-j. [DOI] [PubMed] [Google Scholar]
  32. Rosenbluth R. E., Baillie D. L. The genetic analysis of a reciprocal translocation, eT1(III; V), in Caenorhabditis elegans. Genetics. 1981 Nov-Dec;99(3-4):415–428. doi: 10.1093/genetics/99.3-4.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Scherthan H., Loidl J., Schuster T., Schweizer D. Meiotic chromosome condensation and pairing in Saccharomyces cerevisiae studied by chromosome painting. Chromosoma. 1992 Oct;101(10):590–595. doi: 10.1007/BF00360535. [DOI] [PubMed] [Google Scholar]
  34. Sen S. K. Synaptonemal complexes in haploid Petunia and Antirrhinum sp. Naturwissenschaften. 1970 Nov;57(11):550–550. doi: 10.1007/BF00625339. [DOI] [PubMed] [Google Scholar]
  35. Stern M. J., Horvitz H. R. A normally attractive cell interaction is repulsive in two C. elegans mesodermal cell migration mutants. Development. 1991 Nov;113(3):797–803. doi: 10.1242/dev.113.3.797. [DOI] [PubMed] [Google Scholar]
  36. Zetka M. C., Rose A. M. The meiotic behavior of an inversion in Caenorhabditis elegans. Genetics. 1992 Jun;131(2):321–332. doi: 10.1093/genetics/131.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES