Skip to main content
Genetics logoLink to Genetics
. 1994 May;137(1):331–336. doi: 10.1093/genetics/137.1.331

Linkage Disequilibrium in Growing and Stable Populations

M Slatkin 1
PMCID: PMC1205949  PMID: 8056320

Abstract

Nonrandom associations between alleles at different loci can be tested for using Fisher's exact test. Extensive simulations show that there is a substantial probability of obtaining significant nonrandom associations between closely or completely linked polymorphic neutral loci in a population of constant size at equilibrium under mutation and genetic drift. In a rapidly growing population, however, there will be little chance of finding significant nonrandom associations even between completely linked loci if the growth has been sufficiently rapid. This result is illustrated by the analysis of mitochondrial DNA sequence data from humans. In comparing all pairs of informative sites, fewer than 5% of the pairs show significant disequilibrium in Sardinians, which have apparently undergone rapid population growth, while 20% to 30% in !Kung and Pygmies, which apparently have not undergone rapid growth, show significance. The extent of linkage disequilibrium in a population is closely related to the gene genealogies of the loci examined, with ``starlike'' genealogies making significant linkage disequilibrium unlikely.

Full Text

The Full Text of this article is available as a PDF (650.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Di Rienzo A., Wilson A. C. Branching pattern in the evolutionary tree for human mitochondrial DNA. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1597–1601. doi: 10.1073/pnas.88.5.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hedrick P. W. Gametic disequilibrium measures: proceed with caution. Genetics. 1987 Oct;117(2):331–341. doi: 10.1093/genetics/117.2.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hudson R. R., Kaplan N. L. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics. 1985 Sep;111(1):147–164. doi: 10.1093/genetics/111.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Lewontin R. C. On measures of gametic disequilibrium. Genetics. 1988 Nov;120(3):849–852. doi: 10.1093/genetics/120.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ohta T., Kimura M. Linkage disequilibrium at steady state determined by random genetic drift and recurrent mutation. Genetics. 1969 Sep;63(1):229–238. doi: 10.1093/genetics/63.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Slatkin M., Hudson R. R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics. 1991 Oct;129(2):555–562. doi: 10.1093/genetics/129.2.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Vigilant L., Stoneking M., Harpending H., Hawkes K., Wilson A. C. African populations and the evolution of human mitochondrial DNA. Science. 1991 Sep 27;253(5027):1503–1507. doi: 10.1126/science.1840702. [DOI] [PubMed] [Google Scholar]
  8. Wakeley J. Substitution rate variation among sites in hypervariable region 1 of human mitochondrial DNA. J Mol Evol. 1993 Dec;37(6):613–623. doi: 10.1007/BF00182747. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES