Skip to main content
Genetics logoLink to Genetics
. 1994 Jun;137(2):369–379. doi: 10.1093/genetics/137.2.369

Reduced Dosage of Genes Encoding Ribosomal Protein S18 Suppresses a Mitochondrial Initiation Codon Mutation in Saccharomyces Cerevisiae

L S Folley 1, T D Fox 1
PMCID: PMC1205963  PMID: 8070651

Abstract

A yeast mitochondrial translation initiation codon mutation affecting the gene for cytochrome oxidase subunit III (COX3) was partially suppressed by a spontaneous nuclear mutation. The suppressor mutation also caused cold-sensitive fermentative growth on glucose medium. Suppression and cold sensitivity resulted from inactivation of the gene product of RPS18A, one of two unlinked genes that code the essential cytoplasmic small subunit ribosomal protein termed S18 in yeast. The two S18 genes differ only by 21 silent substitutions in their exons; both are interrupted by a single intron after the 15th codon. Yeast S18 is homologous to the human S11 (70% identical) and the Escherichia coli S17 (35% identical) ribosomal proteins. This highly conserved family of ribosomal proteins has been implicated in maintenance of translational accuracy and is essential for assembly of the small ribosomal subunit. Characterization of the original rps18a-1 missense mutant and rps18aΔ and rps18bΔ null mutants revealed that levels of suppression, cold sensitivity and paromomycin sensitivity all varied directly with a limitation of small ribosomal subunits. The rps18a-1 mutant was most affected, followed by rps18aΔ then rps18bΔ. Mitochondrial mutations that decreased COX3 expression without altering the initiation codon were not suppressed. This allele specificity implicates mitochondrial translation in the mechanism of suppression. We could not detect an epitope-tagged variant of S18 in mitochondria. Thus, it appears that suppression of the mitochondrial translation initiation defect is caused indirectly by reduced levels of cytoplasmic small ribosomal subunits, leading to changes in either cytoplasmic translational accuracy or the relative levels of cytoplasmic translation products.

Full Text

The Full Text of this article is available as a PDF (5.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abovich N., Gritz L., Tung L., Rosbash M. Effect of RP51 gene dosage alterations on ribosome synthesis in Saccharomyces cerevisiae. Mol Cell Biol. 1985 Dec;5(12):3429–3435. doi: 10.1128/mcb.5.12.3429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Attardi G., Schatz G. Biogenesis of mitochondria. Annu Rev Cell Biol. 1988;4:289–333. doi: 10.1146/annurev.cb.04.110188.001445. [DOI] [PubMed] [Google Scholar]
  3. Baim S. B., Pietras D. F., Eustice D. C., Sherman F. A mutation allowing an mRNA secondary structure diminishes translation of Saccharomyces cerevisiae iso-1-cytochrome c. Mol Cell Biol. 1985 Aug;5(8):1839–1846. doi: 10.1128/mcb.5.8.1839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bollen A., Cabezón T., de Wilde M., Villarroel R., Herzog A. Alteration of ribosomal protein S17 by mutation linked to neamine resistance in Escherichia coli. I. General properties of neaA mutants. J Mol Biol. 1975 Dec 25;99(4):795–806. doi: 10.1016/s0022-2836(75)80185-9. [DOI] [PubMed] [Google Scholar]
  5. Chatton B., Walter P., Ebel J. P., Lacroute F., Fasiolo F. The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J Biol Chem. 1988 Jan 5;263(1):52–57. [PubMed] [Google Scholar]
  6. Chen J. Y., Joyce P. B., Wolfe C. L., Steffen M. C., Martin N. C. Cytoplasmic and mitochondrial tRNA nucleotidyltransferase activities are derived from the same gene in the yeast Saccharomyces cerevisiae. J Biol Chem. 1992 Jul 25;267(21):14879–14883. [PubMed] [Google Scholar]
  7. Chernoff Y. O., Inge-Vechtomov S. G., Derkach I. L., Ptyushkina M. V., Tarunina O. V., Dagkesamanskaya A. R., Ter-Avanesyan M. D. Dosage-dependent translational suppression in yeast Saccharomyces cerevisiae. Yeast. 1992 Jul;8(7):489–499. doi: 10.1002/yea.320080702. [DOI] [PubMed] [Google Scholar]
  8. Donahue T. F., Cigan A. M., Pabich E. K., Valavicius B. C. Mutations at a Zn(II) finger motif in the yeast eIF-2 beta gene alter ribosomal start-site selection during the scanning process. Cell. 1988 Aug 26;54(5):621–632. doi: 10.1016/s0092-8674(88)80006-0. [DOI] [PubMed] [Google Scholar]
  9. Donovan D. M., Remington M. P., Stewart D. A., Crouse J. C., Miles D. J., Pearson N. J. Functional analysis of a duplicated linked pair of ribosomal protein genes in Saccharomyces cerevisiae. Mol Cell Biol. 1990 Nov;10(11):6097–6100. doi: 10.1128/mcb.10.11.6097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eustice D. C., Wakem L. P., Wilhelm J. M., Sherman F. Altered 40 S ribosomal subunits in omnipotent suppressors of yeast. J Mol Biol. 1986 Mar 20;188(2):207–214. doi: 10.1016/0022-2836(86)90305-0. [DOI] [PubMed] [Google Scholar]
  11. Fabian G. R., Hopper A. K. RRP1, a Saccharomyces cerevisiae gene affecting rRNA processing and production of mature ribosomal subunits. J Bacteriol. 1987 Apr;169(4):1571–1578. doi: 10.1128/jb.169.4.1571-1578.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Folley L. S., Fox T. D. Site-directed mutagenesis of a Saccharomyces cerevisiae mitochondrial translation initiation codon. Genetics. 1991 Nov;129(3):659–668. doi: 10.1093/genetics/129.3.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gantt J. S., Thompson M. D. Plant cytosolic ribosomal protein S11 and chloroplast ribosomal protein CS17. Their primary structures and evolutionary relationships. J Biol Chem. 1990 Feb 15;265(5):2763–2767. [PubMed] [Google Scholar]
  14. Gillman E. C., Slusher L. B., Martin N. C., Hopper A. K. MOD5 translation initiation sites determine N6-isopentenyladenosine modification of mitochondrial and cytoplasmic tRNA. Mol Cell Biol. 1991 May;11(5):2382–2390. doi: 10.1128/mcb.11.5.2382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grivell L. A. Nucleo-mitochondrial interactions in yeast mitochondrial biogenesis. Eur J Biochem. 1989 Jul 1;182(3):477–493. doi: 10.1111/j.1432-1033.1989.tb14854.x. [DOI] [PubMed] [Google Scholar]
  16. Grivell L. A., Reijnders L., Borst P. Isolation of yeast mitochondrial ribosomes highly active in protein synthesis. Biochim Biophys Acta. 1971 Sep 30;247(1):91–103. doi: 10.1016/0005-2787(71)90811-2. [DOI] [PubMed] [Google Scholar]
  17. Haffter P., McMullin T. W., Fox T. D. A genetic link between an mRNA-specific translational activator and the translation system in yeast mitochondria. Genetics. 1990 Jul;125(3):495–503. doi: 10.1093/genetics/125.3.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Held W. A., Ballou B., Mizushima S., Nomura M. Assembly mapping of 30 S ribosomal proteins from Escherichia coli. Further studies. J Biol Chem. 1974 May 25;249(10):3103–3111. [PubMed] [Google Scholar]
  19. Herzog A., Yaguchi M., Cabezón T., Corchuelo M. C., Petre J., Bollen A. A missense mutation in the gene coding for ribosomal protein S17 (rpsQ) leading to ribosomal assembly defectivity in Escherichia coli. Mol Gen Genet. 1979 Mar 9;171(1):15–22. doi: 10.1007/BF00274010. [DOI] [PubMed] [Google Scholar]
  20. Kimura J., Kimura M. The primary structures of ribosomal proteins S14 and S16 from the archaebacterium Halobacterium marismortui. Comparison with eubacterial and eukaryotic ribosomal proteins. J Biol Chem. 1987 Sep 5;262(25):12150–12157. [PubMed] [Google Scholar]
  21. Kolman C. J., Snyder M., Söll D. Genomic organization of tRNA and aminoacyl-tRNA synthetase genes for two amino acids in Saccharomyces cerevisiae. Genomics. 1988 Oct;3(3):201–206. doi: 10.1016/0888-7543(88)90080-8. [DOI] [PubMed] [Google Scholar]
  22. Kolodziej P. A., Young R. A. Epitope tagging and protein surveillance. Methods Enzymol. 1991;194:508–519. doi: 10.1016/0076-6879(91)94038-e. [DOI] [PubMed] [Google Scholar]
  23. Kruiswijk T., Planta R. J. Analysis of the protein composition of yeast ribosomal subunits by two-dimensional polyacrylamide gel electrophoresis. Mol Biol Rep. 1974 Sep;1(7):409–415. doi: 10.1007/BF00385674. [DOI] [PubMed] [Google Scholar]
  24. Kushnirov V. V., Ter-Avanesyan M. D., Telckov M. V., Surguchov A. P., Smirnov V. N., Inge-Vechtomov S. G. Nucleotide sequence of the SUP2 (SUP35) gene of Saccharomyces cerevisiae. Gene. 1988 Jun 15;66(1):45–54. doi: 10.1016/0378-1119(88)90223-5. [DOI] [PubMed] [Google Scholar]
  25. Leer R. J., Van Raamsdonk-Duin M. M., Mager W. H., Planta R. J. Conserved sequences upstream of yeast ribosomal protein genes. Curr Genet. 1985;9(4):273–277. doi: 10.1007/BF00419955. [DOI] [PubMed] [Google Scholar]
  26. Lott J. B., Mackie G. A. Sequence of a cloned cDNA encoding human ribosomal protein S11. Nucleic Acids Res. 1988 Feb 11;16(3):1205–1205. doi: 10.1093/nar/16.3.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Masurekar M., Palmer E., Ono B. I., Wilhelm J. M., Sherman F. Misreading of the ribosomal suppressor SUP46 due to an altered 40 S subunit in yeast. J Mol Biol. 1981 Apr 15;147(3):381–390. doi: 10.1016/0022-2836(81)90490-3. [DOI] [PubMed] [Google Scholar]
  28. McMullin T. W., Haffter P., Fox T. D. A novel small-subunit ribosomal protein of yeast mitochondria that interacts functionally with an mRNA-specific translational activator. Mol Cell Biol. 1990 Sep;10(9):4590–4595. doi: 10.1128/mcb.10.9.4590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Moritz M., Paulovich A. G., Tsay Y. F., Woolford J. L., Jr Depletion of yeast ribosomal proteins L16 or rp59 disrupts ribosome assembly. J Cell Biol. 1990 Dec;111(6 Pt 1):2261–2274. doi: 10.1083/jcb.111.6.2261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Najarian D., Dihanich M. E., Martin N. C., Hopper A. K. DNA sequence and transcript mapping of MOD5: features of the 5' region which suggest two translational starts. Mol Cell Biol. 1987 Jan;7(1):185–191. doi: 10.1128/mcb.7.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Natsoulis G., Hilger F., Fink G. R. The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell. 1986 Jul 18;46(2):235–243. doi: 10.1016/0092-8674(86)90740-3. [DOI] [PubMed] [Google Scholar]
  32. Orr-Weaver T. L., Szostak J. W., Rothstein R. J. Genetic applications of yeast transformation with linear and gapped plasmids. Methods Enzymol. 1983;101:228–245. doi: 10.1016/0076-6879(83)01017-4. [DOI] [PubMed] [Google Scholar]
  33. Palmer E., Wilhelm J. M., Sherman F. Phenotypic suppression of nonsense mutants in yeast by aminoglycoside antibiotics. Nature. 1979 Jan 11;277(5692):148–150. doi: 10.1038/277148a0. [DOI] [PubMed] [Google Scholar]
  34. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Raué H. A., Mager W. H., Planta R. J. Structural and functional analysis of yeast ribosomal proteins. Methods Enzymol. 1991;194:453–477. doi: 10.1016/0076-6879(91)94035-b. [DOI] [PubMed] [Google Scholar]
  36. Rotenberg M. O., Woolford J. L., Jr Tripartite upstream promoter element essential for expression of Saccharomyces cerevisiae ribosomal protein genes. Mol Cell Biol. 1986 Feb;6(2):674–687. doi: 10.1128/mcb.6.2.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rothstein R. J. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–211. doi: 10.1016/0076-6879(83)01015-0. [DOI] [PubMed] [Google Scholar]
  38. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Singh A., Ursic D., Davies J. Phenotypic suppression and misreading Saccharomyces cerevisiae. Nature. 1979 Jan 11;277(5692):146–148. doi: 10.1038/277146a0. [DOI] [PubMed] [Google Scholar]
  40. Song J. M., Picologlou S., Grant C. M., Firoozan M., Tuite M. F., Liebman S. Elongation factor EF-1 alpha gene dosage alters translational fidelity in Saccharomyces cerevisiae. Mol Cell Biol. 1989 Oct;9(10):4571–4575. doi: 10.1128/mcb.9.10.4571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Stöffler-Meilicke M., Dabbs E. R., Albrecht-Ehrlich R., Stöffler G. A mutant from Escherichia coli which lacks ribosomal proteins S17 and L29 used to localize these two proteins on the ribosomal surface. Eur J Biochem. 1985 Aug 1;150(3):485–490. doi: 10.1111/j.1432-1033.1985.tb09048.x. [DOI] [PubMed] [Google Scholar]
  42. Takakura H., Tsunasawa S., Miyagi M., Warner J. R. NH2-terminal acetylation of ribosomal proteins of Saccharomyces cerevisiae. J Biol Chem. 1992 Mar 15;267(8):5442–5445. [PubMed] [Google Scholar]
  43. Tanaka T., Kuwano Y., Ishikawa K., Ogata K. Nucleotide sequence of cloned cDNA specific for rat ribosomal protein S11. J Biol Chem. 1985 May 25;260(10):6329–6333. [PubMed] [Google Scholar]
  44. Ter-Avanesyan M. D., Zimmermann J., Inge-Vechtomov S. G., Sudarikov A. B., Smirnov V. N., Surguchov A. P. Ribosomal recessive suppressors cause a respiratory deficiency in yeast Saccharomyces cerevisiae. Mol Gen Genet. 1982;185(2):319–323. doi: 10.1007/BF00330805. [DOI] [PubMed] [Google Scholar]
  45. Thorsness P. E., Fox T. D. Nuclear mutations in Saccharomyces cerevisiae that affect the escape of DNA from mitochondria to the nucleus. Genetics. 1993 May;134(1):21–28. doi: 10.1093/genetics/134.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Tzagoloff A., Dieckmann C. L. PET genes of Saccharomyces cerevisiae. Microbiol Rev. 1990 Sep;54(3):211–225. doi: 10.1128/mr.54.3.211-225.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Warner J. R., Gorenstein C. The ribosomal proteins of Saccharomyces cerevisiae. Methods Cell Biol. 1978;20:45–60. doi: 10.1016/s0091-679x(08)62008-7. [DOI] [PubMed] [Google Scholar]
  48. Weiss-Brummer B., Hüttenhofer A. The paromomycin resistance mutation (parr-454) in the 15 S rRNA gene of the yeast Saccharomyces cerevisiae is involved in ribosomal frameshifting. Mol Gen Genet. 1989 Jun;217(2-3):362–369. doi: 10.1007/BF02464905. [DOI] [PubMed] [Google Scholar]
  49. Weitzmann C. J., Cunningham P. R., Nurse K., Ofengand J. Chemical evidence for domain assembly of the Escherichia coli 30S ribosome. FASEB J. 1993 Jan;7(1):177–180. doi: 10.1096/fasebj.7.1.7916699. [DOI] [PubMed] [Google Scholar]
  50. Weygand-Durasevic I., Johnson-Burke D., Söll D. Cloning and characterization of the gene coding for cytoplasmic seryl-tRNA synthetase from Saccharomyces cerevisiae. Nucleic Acids Res. 1987 Mar 11;15(5):1887–1904. doi: 10.1093/nar/15.5.1887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wiener L., Schüler D., Brimacombe R. Protein binding sites on Escherichia coli 16S ribosomal RNA; RNA regions that are protected by proteins S7, S9 and S19, and by proteins S8, S15 and S17. Nucleic Acids Res. 1988 Feb 25;16(4):1233–1250. doi: 10.1093/nar/16.4.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Yaguchi M., Wittmann H. G. The primary structure of protein S17 from the small ribosomal subunit of Escherichia coli. FEBS Lett. 1978 Mar 1;87(1):37–40. doi: 10.1016/0014-5793(78)80127-6. [DOI] [PubMed] [Google Scholar]
  53. Zurawski G., Zurawski S. M. Structure of the Escherichia coli S10 ribosomal protein operon. Nucleic Acids Res. 1985 Jun 25;13(12):4521–4526. doi: 10.1093/nar/13.12.4521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. von Heijne G. Mitochondrial targeting sequences may form amphiphilic helices. EMBO J. 1986 Jun;5(6):1335–1342. doi: 10.1002/j.1460-2075.1986.tb04364.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES