Skip to main content
Genetics logoLink to Genetics
. 1994 Jun;137(2):551–563. doi: 10.1093/genetics/137.2.551

Local Transposition of P Elements in Drosophila Melanogaster and Recombination between Duplicated Elements Using a Site-Specific Recombinase

K G Golic 1
PMCID: PMC1205977  PMID: 8070665

Abstract

The transposase source Δ2-3(99B) was used to mobilize a P element located at sites on chromosomes X, 2 and 3. The transposition event most frequently recovered was a chromosome with two copies of the P element at or near the original site of insertion. These were easily recognized because the P element carried a hypomorphic while gene with a dosage dependent phenotype; flies with two copies of the gene have darker eyes than flies with one copy. The P element also carried direct repeats of the recombination target (FRT) for the FLP site-specific recombinase. The synthesis of FLP in these flies caused excision of the FRT-flanked white gene. Because the two white copies excised independently, patches of eye tissue with different levels of pigmentation were produced. Thus, the presence of two copies of the FRT-flanked white gene could be verified. When the P elements lay in the same orientation, FLP-mediated recombination between the FRTs on separated elements produced deficiencies and duplications of the flanked region. When P elements were inverted, the predominant consequence of FLP-catalyzed recombination between the inverted elements was the formation of dicentric chromosomes and acentric fragments as a result of unequal sister chromatid exchange.

Full Text

The Full Text of this article is available as a PDF (7.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bishop J. G., 3rd, Corces V. G. Expression of an activated ras gene causes developmental abnormalities in transgenic Drosophila melanogaster. Genes Dev. 1988 May;2(5):567–577. doi: 10.1101/gad.2.5.567. [DOI] [PubMed] [Google Scholar]
  2. Brink R A, Nilan R A. The Relation between Light Variegated and Medium Variegated Pericarp in Maize. Genetics. 1952 Sep;37(5):519–544. doi: 10.1093/genetics/37.5.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cooley L., Thompson D., Spradling A. C. Constructing deletions with defined endpoints in Drosophila. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3170–3173. doi: 10.1073/pnas.87.8.3170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Daniels S. B., Chovnick A. P element transposition in Drosophila melanogaster: an analysis of sister-chromatid pairs and the formation of intragenic secondary insertions during meiosis. Genetics. 1993 Mar;133(3):623–636. doi: 10.1093/genetics/133.3.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Engels W. R., Johnson-Schlitz D. M., Eggleston W. B., Sved J. High-frequency P element loss in Drosophila is homolog dependent. Cell. 1990 Aug 10;62(3):515–525. doi: 10.1016/0092-8674(90)90016-8. [DOI] [PubMed] [Google Scholar]
  6. Falco S. C., Li Y., Broach J. R., Botstein D. Genetic properties of chromosomally integrated 2 mu plasmid DNA in yeast. Cell. 1982 Jun;29(2):573–584. doi: 10.1016/0092-8674(82)90173-8. [DOI] [PubMed] [Google Scholar]
  7. Garcia-Bellido A., Merriam J. R. Parameters of the wing imaginal disc development of Drosophila melanogaster. Dev Biol. 1971 Jan;24(1):61–87. doi: 10.1016/0012-1606(71)90047-9. [DOI] [PubMed] [Google Scholar]
  8. Gatti M. Genetic control of chromosome breakage and rejoining in Drosophila melanogaster: spontaneous chromosome aberrations in X-linked mutants defective in DNA metabolism. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1377–1381. doi: 10.1073/pnas.76.3.1377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Golic K. G., Lindquist S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell. 1989 Nov 3;59(3):499–509. doi: 10.1016/0092-8674(89)90033-0. [DOI] [PubMed] [Google Scholar]
  10. Gronostajski R. M., Sadowski P. D. The FLP protein of the 2-micron plasmid of yeast. Inter- and intramolecular reactions. J Biol Chem. 1985 Oct 5;260(22):12328–12335. [PubMed] [Google Scholar]
  11. Harrison D. A., Perrimon N. Simple and efficient generation of marked clones in Drosophila. Curr Biol. 1993 Jul 1;3(7):424–433. doi: 10.1016/0960-9822(93)90349-s. [DOI] [PubMed] [Google Scholar]
  12. Hartwell L. H., Weinert T. A. Checkpoints: controls that ensure the order of cell cycle events. Science. 1989 Nov 3;246(4930):629–634. doi: 10.1126/science.2683079. [DOI] [PubMed] [Google Scholar]
  13. Klemenz R., Weber U., Gehring W. J. The white gene as a marker in a new P-element vector for gene transfer in Drosophila. Nucleic Acids Res. 1987 May 26;15(10):3947–3959. doi: 10.1093/nar/15.10.3947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lindsley D. L., Sandler L., Baker B. S., Carpenter A. T., Denell R. E., Hall J. C., Jacobs P. A., Miklos G. L., Davis B. K., Gethmann R. C. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics. 1972 May;71(1):157–184. doi: 10.1093/genetics/71.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Novitski E. The Genetic Consequences of Anaphase Bridge Formation in Drosophila. Genetics. 1952 May;37(3):270–287. doi: 10.1093/genetics/37.3.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. O'Gorman S., Fox D. T., Wahl G. M. Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science. 1991 Mar 15;251(4999):1351–1355. doi: 10.1126/science.1900642. [DOI] [PubMed] [Google Scholar]
  17. Poodry C. A., Hall L., Suzuki D. T. Developmental properties of Shibire: a pleiotropic mutation affecting larval and adult locomotion and development. Dev Biol. 1973 Jun;32(2):373–386. doi: 10.1016/0012-1606(73)90248-0. [DOI] [PubMed] [Google Scholar]
  18. Raymond J. D., Simmons M. J. An increase in the X-linked lethal mutation rate associated with an unstable locus in Drosophila melanogaster. Genetics. 1981 Jun;98(2):291–302. doi: 10.1093/genetics/98.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ready D. F., Hanson T. E., Benzer S. Development of the Drosophila retina, a neurocrystalline lattice. Dev Biol. 1976 Oct 15;53(2):217–240. doi: 10.1016/0012-1606(76)90225-6. [DOI] [PubMed] [Google Scholar]
  20. Roiha H., Rubin G. M., O'Hare K. P element insertions and rearrangements at the singed locus of Drosophila melanogaster. Genetics. 1988 May;119(1):75–83. doi: 10.1093/genetics/119.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Struhl G., Basler K. Organizing activity of wingless protein in Drosophila. Cell. 1993 Feb 26;72(4):527–540. doi: 10.1016/0092-8674(93)90072-x. [DOI] [PubMed] [Google Scholar]
  22. Sturtevant A H, Beadle G W. The Relations of Inversions in the X Chromosome of Drosophila Melanogaster to Crossing over and Disjunction. Genetics. 1936 Sep;21(5):554–604. doi: 10.1093/genetics/21.5.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tower J., Karpen G. H., Craig N., Spradling A. C. Preferential transposition of Drosophila P elements to nearby chromosomal sites. Genetics. 1993 Feb;133(2):347–359. doi: 10.1093/genetics/133.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Van Schaik N W, Brink R A. Transpositions of Modulator, a Component of the Variegated Pericarp Allele in Maize. Genetics. 1959 Jul;44(4):725–738. doi: 10.1093/genetics/44.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zhang P., Spradling A. C. Efficient and dispersed local P element transposition from Drosophila females. Genetics. 1993 Feb;133(2):361–373. doi: 10.1093/genetics/133.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES