Abstract
LINE-1 repetitive sequences contain a record of an evolving population of transposons within the mammalian genome. Of the 100,000 copies of LINE-1 sequences per genome there are many shared sequence variants representing changes occurring within the propagating LINE-1 elements themselves, rather than changes that occur during retrotransposition or after an element inserts in the genome. These shared sequence variants define families of LINE-1 elements which have spread within specific periods of time. We have been interested in studying events in LINE-1 evolution since the speciation of Mus spretus and Mus domesticus approximately 3 million years (Myr) ago. To do this, we have collected LINE-1 sequences that have shared sequence variants specific to M. spretus. The sampled LINE-1 elements were sequenced at their extreme 3' ends, where the density of sequence variants is highest. The new sequences define six new M. spretus-specific sequence variants. Of these, we have found one that could be used to screen for LINE-1 elements arising in the last 1 Myr, which we argue is a critical sample for understanding the dynamics of LINE-1 propagation.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adey N. B., Schichman S. A., Hutchison C. A., 3rd, Edgell M. H. Composite of A and F-type 5' terminal sequences defines a subfamily of mouse LINE-1 elements. J Mol Biol. 1991 Sep 20;221(2):367–373. doi: 10.1016/0022-2836(91)80057-2. [DOI] [PubMed] [Google Scholar]
- Bonhomme F., Catalan J., Britton-Davidian J., Chapman V. M., Moriwaki K., Nevo E., Thaler L. Biochemical diversity and evolution in the genus Mus. Biochem Genet. 1984 Apr;22(3-4):275–303. doi: 10.1007/BF00484229. [DOI] [PubMed] [Google Scholar]
- Casavant N. C., Hardies S. C. Targeted cloning of a subfamily of LINE-1 elements by subfamily-specific LINE-1-PCR. Mamm Genome. 1993;4(4):193–201. doi: 10.1007/BF00417562. [DOI] [PubMed] [Google Scholar]
- Deininger P. L., Batzer M. A., Hutchison C. A., 3rd, Edgell M. H. Master genes in mammalian repetitive DNA amplification. Trends Genet. 1992 Sep;8(9):307–311. doi: 10.1016/0168-9525(92)90262-3. [DOI] [PubMed] [Google Scholar]
- Dombroski B. A., Mathias S. L., Nanthakumar E., Scott A. F., Kazazian H. H., Jr Isolation of an active human transposable element. Science. 1991 Dec 20;254(5039):1805–1808. doi: 10.1126/science.1662412. [DOI] [PubMed] [Google Scholar]
- Edgell M. H., Hardies S. C., Loeb D. D., Shehee W. R., Padgett R. W., Burton F. H., Comer M. B., Casavant N. C., Funk F. D., Hutchison C. A., 3rd The L1 family in mice. Prog Clin Biol Res. 1987;251:107–129. [PubMed] [Google Scholar]
- Gebhard W., Meitinger T., Höchtl J., Zachau H. G. A new family of interspersed repetitive DNA sequences in the mouse genome. J Mol Biol. 1982 May 25;157(3):453–471. doi: 10.1016/0022-2836(82)90471-5. [DOI] [PubMed] [Google Scholar]
- Jurka J. Subfamily structure and evolution of the human L1 family of repetitive sequences. J Mol Evol. 1989 Dec;29(6):496–503. doi: 10.1007/BF02602921. [DOI] [PubMed] [Google Scholar]
- Kass D. H., Berger F. G., Dawson W. D. The evolution of coexisting highly divergent LINE-1 subfamilies within the rodent genus Peromyscus. J Mol Evol. 1992 Dec;35(6):472–485. doi: 10.1007/BF00160208. [DOI] [PubMed] [Google Scholar]
- Li W. H., Gojobori T., Nei M. Pseudogenes as a paradigm of neutral evolution. Nature. 1981 Jul 16;292(5820):237–239. doi: 10.1038/292237a0. [DOI] [PubMed] [Google Scholar]
- Loeb D. D., Padgett R. W., Hardies S. C., Shehee W. R., Comer M. B., Edgell M. H., Hutchison C. A., 3rd The sequence of a large L1Md element reveals a tandemly repeated 5' end and several features found in retrotransposons. Mol Cell Biol. 1986 Jan;6(1):168–182. doi: 10.1128/mcb.6.1.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin S. L., Voliva C. F., Hardies S. C., Edgell M. H., Hutchison C. A., 3rd Tempo and mode of concerted evolution in the L1 repeat family of mice. Mol Biol Evol. 1985 Mar;2(2):127–140. doi: 10.1093/oxfordjournals.molbev.a040340. [DOI] [PubMed] [Google Scholar]
- Pascale E., Liu C., Valle E., Usdin K., Furano A. V. The evolution of long interspersed repeated DNA (L1, LINE 1) as revealed by the analysis of an ancient rodent L1 DNA family. J Mol Evol. 1993 Jan;36(1):9–20. doi: 10.1007/BF02407302. [DOI] [PubMed] [Google Scholar]
- Rikke B. A., Garvin L. D., Hardies S. C. Systematic identification of LINE-1 repetitive DNA sequence differences having species specificity between Mus spretus and Mus domesticus. J Mol Biol. 1991 Jun 20;219(4):635–643. doi: 10.1016/0022-2836(91)90660-x. [DOI] [PubMed] [Google Scholar]
- Rikke B. A., Hardies S. C. LINE-1 repetitive DNA probes for species-specific cloning from Mus spretus and Mus domesticus genomes. Genomics. 1991 Dec;11(4):895–904. doi: 10.1016/0888-7543(91)90012-4. [DOI] [PubMed] [Google Scholar]
- Rikke B. A., Pinto L. H., Gorin M. B., Hardies S. C. Mus spretus-specific LINE-1 DNA probes applied to the cloning of the murine pearl locus. Genomics. 1993 Feb;15(2):291–296. doi: 10.1006/geno.1993.1059. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schichman S. A., Adey N. B., Edgell M. H., Hutchison C. A., 3rd L1 A-monomer tandem arrays have expanded during the course of mouse L1 evolution. Mol Biol Evol. 1993 May;10(3):552–570. doi: 10.1093/oxfordjournals.molbev.a040025. [DOI] [PubMed] [Google Scholar]
- Schichman S. A., Severynse D. M., Edgell M. H., Hutchison C. A., 3rd Strand-specific LINE-1 transcription in mouse F9 cells originates from the youngest phylogenetic subgroup of LINE-1 elements. J Mol Biol. 1992 Apr 5;224(3):559–574. doi: 10.1016/0022-2836(92)90544-t. [DOI] [PubMed] [Google Scholar]
- Scott A. F., Schmeckpeper B. J., Abdelrazik M., Comey C. T., O'Hara B., Rossiter J. P., Cooley T., Heath P., Smith K. D., Margolet L. Origin of the human L1 elements: proposed progenitor genes deduced from a consensus DNA sequence. Genomics. 1987 Oct;1(2):113–125. doi: 10.1016/0888-7543(87)90003-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shehee W. R., Chao S. F., Loeb D. D., Comer M. B., Hutchison C. A., 3rd, Edgell M. H. Determination of a functional ancestral sequence and definition of the 5' end of A-type mouse L1 elements. J Mol Biol. 1987 Aug 20;196(4):757–767. doi: 10.1016/0022-2836(87)90402-5. [DOI] [PubMed] [Google Scholar]
- Voliva C. F., Jahn C. L., Comer M. B., Hutchison C. A., 3rd, Edgell M. H. The L1Md long interspersed repeat family in the mouse: almost all examples are truncated at one end. Nucleic Acids Res. 1983 Dec 20;11(24):8847–8859. doi: 10.1093/nar/11.24.8847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wahl G. M., Stern M., Stark G. R. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3683–3687. doi: 10.1073/pnas.76.8.3683. [DOI] [PMC free article] [PubMed] [Google Scholar]