Skip to main content
Genetics logoLink to Genetics
. 1994 Jul;137(3):709–714. doi: 10.1093/genetics/137.3.709

Mapping the Heterogeneous DNA Region That Determines the Nine Aα Mating-Type Specificities of Schizophyllum Commune

C A Specht 1, M M Stankis 1, C P Novotny 1, R C Ullrich 1
PMCID: PMC1206030  PMID: 8088516

Abstract

Classical genetic studies identified nine mating-type specificities at the Aα locus of the Basidiomycete fungus Schizophyllum commune. We have used Southern blot hybridizations to generate EcoRI restriction maps of the Aα locus for 18 strains, including all nine specificities. Aα1, Aα3 and Aα4 DNA was subcloned from three cosmids and used as probes. A unique region of DNA was found for each of the three cloned specificities. Hybridization was detected in this region only if the probe(s) and the blotted genomic DNAs were from strains with the same Aα specificity. DNAs from strains with the same Aα specificity hybridize regardless of geographic origin, but DNAs from strains with different Aα specificities do not cross-hybridize. The results demonstrate two size classes of unique Aα DNA. This unique DNA is about 4.5 kb in Aα1 strains and about 7.0-8.5 kb in other strains. Transcription regulators Z and Y, which were deduced previously from the DNA sequence of the Aα1, Aα3 and Aα4 loci, are probably encoded by all non-Aα1 loci. The smaller Aα1 loci appear to encode only Y and lack sequence for Z. No evidence was found for a locus that encodes only Z. The lack of hybridization detected between Aα loci with different specificities suggests that the evolution of Aα has resulted from extensive sequence divergence.

Full Text

The Full Text of this article is available as a PDF (619.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Day P R. The Structure of the a Mating Type Locus in Coprinus Lagopus. Genetics. 1960 May;45(5):641–650. doi: 10.1093/genetics/45.5.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gillissen B., Bergemann J., Sandmann C., Schroeer B., Bölker M., Kahmann R. A two-component regulatory system for self/non-self recognition in Ustilago maydis. Cell. 1992 Feb 21;68(4):647–657. doi: 10.1016/0092-8674(92)90141-x. [DOI] [PubMed] [Google Scholar]
  3. Koltin Y., Raper J. R., Simchen G. The genetic structure of the incompatibility factors of Schizophyllum commune: the B factor. Proc Natl Acad Sci U S A. 1967 Jan;57(1):55–62. doi: 10.1073/pnas.57.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kronstad J. W., Leong S. A. The b mating-type locus of Ustilago maydis contains variable and constant regions. Genes Dev. 1990 Aug;4(8):1384–1395. doi: 10.1101/gad.4.8.1384. [DOI] [PubMed] [Google Scholar]
  5. Kües U., Richardson W. V., Tymon A. M., Mutasa E. S., Göttgens B., Gaubatz S., Gregoriades A., Casselton L. A. The combination of dissimilar alleles of the A alpha and A beta gene complexes, whose proteins contain homeo domain motifs, determines sexual development in the mushroom Coprinus cinereus. Genes Dev. 1992 Apr;6(4):568–577. doi: 10.1101/gad.6.4.568. [DOI] [PubMed] [Google Scholar]
  6. May G., Le Chevanton L., Pukkila P. J. Molecular analysis of the Coprinus cinereus mating type A factor demonstrates an unexpectedly complex structure. Genetics. 1991 Jul;128(3):529–538. doi: 10.1093/genetics/128.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Metzenberg R. L. The role of similarity and difference in fungal mating. Genetics. 1990 Jul;125(3):457–462. doi: 10.1093/genetics/125.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Raper J. R., Baxter M. G., Middleton R. B. THE GENETIC STRUCTURE OF THE INCOMPATIBILITY FACTORS IN SCHIZOPHYLLIUM COMMUNE. Proc Natl Acad Sci U S A. 1958 Sep 15;44(9):889–900. doi: 10.1073/pnas.44.9.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Schulz B., Banuett F., Dahl M., Schlesinger R., Schäfer W., Martin T., Herskowitz I., Kahmann R. The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell. 1990 Jan 26;60(2):295–306. doi: 10.1016/0092-8674(90)90744-y. [DOI] [PubMed] [Google Scholar]
  10. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  11. Specht C. A., DiRusso C. C., Novotny C. P., Ullrich R. C. A method for extracting high-molecular-weight deoxyribonucleic acid from fungi. Anal Biochem. 1982 Jan 1;119(1):158–163. doi: 10.1016/0003-2697(82)90680-7. [DOI] [PubMed] [Google Scholar]
  12. Specht C. A., Stankis M. M., Giasson L., Novotny C. P., Ullrich R. C. Functional analysis of the homeodomain-related proteins of the A alpha locus of Schizophyllum commune. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7174–7178. doi: 10.1073/pnas.89.15.7174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Stankis M. M., Specht C. A., Yang H., Giasson L., Ullrich R. C., Novotny C. P. The A alpha mating locus of Schizophyllum commune encodes two dissimilar multiallelic homeodomain proteins. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7169–7173. doi: 10.1073/pnas.89.15.7169. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES