Skip to main content
Genetics logoLink to Genetics
. 1994 Jul;137(3):791–801. doi: 10.1093/genetics/137.3.791

The Drosophila Molybdenum Cofactor Gene Cinnamon Is Homologous to Three Escherichia Coli Cofactor Proteins and to the Rat Protein Gephyrin

K P Kamdar 1, M E Shelton 1, V Finnerty 1
PMCID: PMC1206039  PMID: 8088525

Abstract

Essentially all organisms depend upon molybdenum oxidoreductases which require a molybdopterin cofactor for catalytic activity. Mutations resulting in a lack of the cofactor show a pleiotropic loss of molybdoenzyme activities and thereby define genes involved in cofactor biosynthesis or utilization. In prokaryotes, two operons are directly associated with biosynthesis of the pterin moiety and its side chain while additional loci play a role in the acquisition of molybdenum and/or activation of the cofactor. Here we report the cloning of cinnamon, a Drosophila molybdenum cofactor gene encoding a protein with sequence similarity to three of the prokaryotic cofactor proteins. In addition, the Drosophila cinnamon protein is homologous to gephyrin, a protein isolated from the rat central nervous system. Our results suggest that some portions of the prokaryotic cofactor biosynthetic pathway composed of monofunctional proteins have evolved into a multifunctional protein in higher eukaryotes.

Full Text

The Full Text of this article is available as a PDF (5.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilar M. R., Cárdenas J., Fernández E. Regulation of molybdenum cofactor species in the green alga Chlamydomonas reinhardtii. Biochim Biophys Acta. 1991 Apr 9;1073(3):463–469. doi: 10.1016/0304-4165(91)90216-4. [DOI] [PubMed] [Google Scholar]
  2. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Campuzano S., Carramolino L., Cabrera C. V., Ruíz-Gómez M., Villares R., Boronat A., Modolell J. Molecular genetics of the achaete-scute gene complex of D. melanogaster. Cell. 1985 Feb;40(2):327–338. doi: 10.1016/0092-8674(85)90147-3. [DOI] [PubMed] [Google Scholar]
  4. Davidson J. N., Chen K. C., Jamison R. S., Musmanno L. A., Kern C. B. The evolutionary history of the first three enzymes in pyrimidine biosynthesis. Bioessays. 1993 Mar;15(3):157–164. doi: 10.1002/bies.950150303. [DOI] [PubMed] [Google Scholar]
  5. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  6. Fleming R. J., DeSimone S. M., White K. Molecular isolation and analysis of the erect wing locus in Drosophila melanogaster. Mol Cell Biol. 1989 Feb;9(2):719–725. doi: 10.1128/mcb.9.2.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Froehner S. C. Neurobiology. Anchoring glycine receptors. Nature. 1993 Dec 23;366(6457):719–719. doi: 10.1038/366719a0. [DOI] [PubMed] [Google Scholar]
  8. Henikoff S., Keene M. A., Sloan J. S., Bleskan J., Hards R., Patterson D. Multiple purine pathway enzyme activities are encoded at a single genetic locus in Drosophila. Proc Natl Acad Sci U S A. 1986 Feb;83(3):720–724. doi: 10.1073/pnas.83.3.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hinton S. M., Dean D. Biogenesis of molybdenum cofactors. Crit Rev Microbiol. 1990;17(3):169–188. doi: 10.3109/10408419009105724. [DOI] [PubMed] [Google Scholar]
  10. Hultmark D., Klemenz R., Gehring W. J. Translational and transcriptional control elements in the untranslated leader of the heat-shock gene hsp22. Cell. 1986 Feb 14;44(3):429–438. doi: 10.1016/0092-8674(86)90464-2. [DOI] [PubMed] [Google Scholar]
  11. Jackson I. J. A reappraisal of non-consensus mRNA splice sites. Nucleic Acids Res. 1991 Jul 25;19(14):3795–3798. doi: 10.1093/nar/19.14.3795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Johnson J. L., Bastian N. R., Rajagopalan K. V. Molybdopterin guanine dinucleotide: a modified form of molybdopterin identified in the molybdenum cofactor of dimethyl sulfoxide reductase from Rhodobacter sphaeroides forma specialis denitrificans. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3190–3194. doi: 10.1073/pnas.87.8.3190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johnson J. L., Wuebbens M. M., Mandell R., Shih V. E. Molybdenum cofactor biosynthesis in humans. Identification of two complementation groups of cofactor-deficient patients and preliminary characterization of a diffusible molybdopterin precursor. J Clin Invest. 1989 Mar;83(3):897–903. doi: 10.1172/JCI113974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Keller E. C., Jr, Glassman E. Phenocopies of the ma-1 and ry mutants of Drosophila melanogaster: inhibition in vivo of xanthine dehydrogenase by 4-hydroxypyrazolo(3,4-d)pyrimidine. Nature. 1965 Oct 9;208(5006):202–203. doi: 10.1038/208202a0. [DOI] [PubMed] [Google Scholar]
  15. Kirsch J., Malosio M. L., Wolters I., Betz H. Distribution of gephyrin transcripts in the adult and developing rat brain. Eur J Neurosci. 1993 Sep 1;5(9):1109–1117. doi: 10.1111/j.1460-9568.1993.tb00965.x. [DOI] [PubMed] [Google Scholar]
  16. Kirsch J., Wolters I., Triller A., Betz H. Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Nature. 1993 Dec 23;366(6457):745–748. doi: 10.1038/366745a0. [DOI] [PubMed] [Google Scholar]
  17. Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kramer S. P., Johnson J. L., Ribeiro A. A., Millington D. S., Rajagopalan K. V. The structure of the molybdenum cofactor. Characterization of di-(carboxamidomethyl)molybdopterin from sulfite oxidase and xanthine oxidase. J Biol Chem. 1987 Dec 5;262(34):16357–16363. [PubMed] [Google Scholar]
  19. Maniatis T., Hardison R. C., Lacy E., Lauer J., O'Connell C., Quon D., Sim G. K., Efstratiadis A. The isolation of structural genes from libraries of eucaryotic DNA. Cell. 1978 Oct;15(2):687–701. doi: 10.1016/0092-8674(78)90036-3. [DOI] [PubMed] [Google Scholar]
  20. Meidinger R. G., Bentley M. M. Genetic and developmental characterization of the aldox-2 locus of Drosophila melanogaster. Biochem Genet. 1986 Oct;24(9-10):683–699. doi: 10.1007/BF00499002. [DOI] [PubMed] [Google Scholar]
  21. Nason A., Lee K. Y., Pan S. S., Ketchum P. A., Lamberti A., DeVries J. Invitro formation of assimilatory reduced nicotinamide adenine dinucleotide phosphate: nitrate reductase from a Neurospora mutant and a component of molybdenum-enzymes. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3242–3246. doi: 10.1073/pnas.68.12.3242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nohno T., Kasai Y., Saito T. Cloning and sequencing of the Escherichia coli chlEN operon involved in molybdopterin biosynthesis. J Bacteriol. 1988 Sep;170(9):4097–4102. doi: 10.1128/jb.170.9.4097-4102.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. PATEMAN J. A., COVE D. J., REVER B. M., ROBERTS D. B. A COMMON CO-FACTOR FOR NITRATE REDUCTASE AND XANTHINE DEHYDROGENASE WHICH ALSO REGULATES THE SYNTHESIS OF NITRATE REDUCTASE. Nature. 1964 Jan 4;201:58–60. doi: 10.1038/201058a0. [DOI] [PubMed] [Google Scholar]
  24. Pitterle D. M., Johnson J. L., Rajagopalan K. V. In vitro synthesis of molybdopterin from precursor Z using purified converting factor. Role of protein-bound sulfur in formation of the dithiolene. J Biol Chem. 1993 Jun 25;268(18):13506–13509. [PubMed] [Google Scholar]
  25. Rajagopalan K. V., Johnson J. L. The pterin molybdenum cofactors. J Biol Chem. 1992 May 25;267(15):10199–10202. [PubMed] [Google Scholar]
  26. Rivers S. L., McNairn E., Blasco F., Giordano G., Boxer D. H. Molecular genetic analysis of the moa operon of Escherichia coli K-12 required for molybdenum cofactor biosynthesis. Mol Microbiol. 1993 Jun;8(6):1071–1081. doi: 10.1111/j.1365-2958.1993.tb01652.x. [DOI] [PubMed] [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schott D. R., Baldwin M. C., Finnerty V. Molybdenum hydroxylases in Drosophila. III. Further characterization of the low xanthine dehydrogenase gene. Biochem Genet. 1986 Aug;24(7-8):509–527. doi: 10.1007/BF00504332. [DOI] [PubMed] [Google Scholar]
  29. Shanmugam K. T., Stewart V., Gunsalus R. P., Boxer D. H., Cole J. A., Chippaux M., DeMoss J. A., Giordano G., Lin E. C., Rajagopalan K. V. Proposed nomenclature for the genes involved in molybdenum metabolism in Escherichia coli and Salmonella typhimurium. Mol Microbiol. 1992 Nov;6(22):3452–3454. doi: 10.1111/j.1365-2958.1992.tb02215.x. [DOI] [PubMed] [Google Scholar]
  30. Wuebbens M. M., Rajagopalan K. V. Structural characterization of a molybdopterin precursor. J Biol Chem. 1993 Jun 25;268(18):13493–13498. [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES