Skip to main content
Genetics logoLink to Genetics
. 1994 Aug;137(4):1079–1087. doi: 10.1093/genetics/137.4.1079

Genetic Instability at the Agouti Locus of the Mouse (Mus Musculus). I. Increased Reverse Mutation Frequency to the A(w) Allele in a/a Heterozygotes

R Sandulache 1, A Neuhauser-Klaus 1, J Favor 1
PMCID: PMC1206055  PMID: 7982562

Abstract

We have compiled the reverse mutation rate data to the white bellied agouti (A(w)) allele in heterozygous A/a mice and shown it to be increased by a factor of at least 350 in comparison to the reverse mutation rate in homozygous a/a mice. Employing tightly linked flanking restriction fragment length polymorphism DNA markers, we have shown that reversion to A(w) is associated with crossing over in the vicinity of the agouti locus. The non-agouti (a) allele has been recently shown to contain an 11-kb insert within the first intron of the agouti gene. Together with our present results, these observations suggest possible mechanisms to explain the reversion events.

Full Text

The Full Text of this article is available as a PDF (5.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brook J. D., McCurrach M. E., Harley H. G., Buckler A. J., Church D., Aburatani H., Hunter K., Stanton V. P., Thirion J. P., Hudson T. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member. Cell. 1992 Feb 21;68(4):799–808. doi: 10.1016/0092-8674(92)90154-5. [DOI] [PubMed] [Google Scholar]
  2. Chandley A. C., Mitchell A. R. Hypervariable minisatellite regions are sites for crossing-over at meiosis in man. Cytogenet Cell Genet. 1988;48(3):152–155. doi: 10.1159/000132613. [DOI] [PubMed] [Google Scholar]
  3. Dietrich W., Katz H., Lincoln S. E., Shin H. S., Friedman J., Dracopoli N. C., Lander E. S. A genetic map of the mouse suitable for typing intraspecific crosses. Genetics. 1992 Jun;131(2):423–447. doi: 10.1093/genetics/131.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Duyao M., Ambrose C., Myers R., Novelletto A., Persichetti F., Frontali M., Folstein S., Ross C., Franz M., Abbott M. Trinucleotide repeat length instability and age of onset in Huntington's disease. Nat Genet. 1993 Aug;4(4):387–392. doi: 10.1038/ng0893-387. [DOI] [PubMed] [Google Scholar]
  5. Favor J. A comparison of the dominant cataract and recessive specific-locus mutation rates induced by treatment of male mice with ethylnitrosourea. Mutat Res. 1983 Aug;110(2):367–382. doi: 10.1016/0027-5107(83)90153-7. [DOI] [PubMed] [Google Scholar]
  6. Favor J., Neuhäuser-Klaus A., Ehling U. H. Radiation-induced forward and reverse specific locus mutations and dominant cataract mutations in treated strain BALB/c and DBA/2 male mice. Mutat Res. 1987 Mar;177(1):161–169. doi: 10.1016/0027-5107(87)90031-5. [DOI] [PubMed] [Google Scholar]
  7. Favor J., Neuhäuser-Klaus A., Ehling U. H. The frequency of dominant cataract and recessive specific-locus mutations and mutation mosaics in F1 mice derived from post-spermatogonial treatment with ethylnitrosourea. Mutat Res. 1990 Apr;229(2):105–114. doi: 10.1016/0027-5107(90)90084-h. [DOI] [PubMed] [Google Scholar]
  8. Favor J., Neuhäuser-Klaus A., Ehling U. H. The induction of forward and reverse specific-locus mutations and dominant cataract mutations in spermatogonia of treated strain DBA/2 mice by ethylnitrosourea. Mutat Res. 1991 Aug;249(2):293–300. doi: 10.1016/0027-5107(91)90003-7. [DOI] [PubMed] [Google Scholar]
  9. Favor J., Strauss P. G., Erfle V. Molecular characterization of a radiation-induced reverse mutation at the dilute locus in the mouse. Genet Res. 1987 Dec;50(3):219–223. doi: 10.1017/s0016672300023739. [DOI] [PubMed] [Google Scholar]
  10. Favor J. The frequency of dominant cataract and recessive specific-locus mutations in mice derived from 80 or 160 mg ethylnitrosourea per kg body weight treated spermatogonia. Mutat Res. 1986 Aug;162(1):69–80. doi: 10.1016/0027-5107(86)90072-2. [DOI] [PubMed] [Google Scholar]
  11. Gondo Y., Gardner J. M., Nakatsu Y., Durham-Pierre D., Deveau S. A., Kuper C., Brilliant M. H. High-frequency genetic reversion mediated by a DNA duplication: the mouse pink-eyed unstable mutation. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):297–301. doi: 10.1073/pnas.90.1.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hutchison K. W., Copeland N. G., Jenkins N. A. Dilute-coat-color locus of mice: nucleotide sequence analysis of the d+2J and d+Ha revertant alleles. Mol Cell Biol. 1984 Dec;4(12):2899–2904. doi: 10.1128/mcb.4.12.2899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Imbert G., Kretz C., Johnson K., Mandel J. L. Origin of the expansion mutation in myotonic dystrophy. Nat Genet. 1993 May;4(1):72–76. doi: 10.1038/ng0593-72. [DOI] [PubMed] [Google Scholar]
  14. Jeffreys A. J., Royle N. J., Wilson V., Wong Z. Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature. 1988 Mar 17;332(6161):278–281. doi: 10.1038/332278a0. [DOI] [PubMed] [Google Scholar]
  15. Jeffreys A. J., Wilson V., Thein S. L. Hypervariable 'minisatellite' regions in human DNA. Nature. 1985 Mar 7;314(6006):67–73. doi: 10.1038/314067a0. [DOI] [PubMed] [Google Scholar]
  16. Jenkins N. A., Copeland N. G., Taylor B. A., Lee B. K. Dilute (d) coat colour mutation of DBA/2J mice is associated with the site of integration of an ecotropic MuLV genome. Nature. 1981 Oct 1;293(5831):370–374. doi: 10.1038/293370a0. [DOI] [PubMed] [Google Scholar]
  17. Lovett M., Cheng Z. Y., Lamela E. M., Yokoi T., Epstein C. J. Molecular markers for the agouti coat color locus of the mouse. Genetics. 1987 Apr;115(4):747–754. doi: 10.1093/genetics/115.4.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Madsen H. O., Hjorth J. P. Molecular cloning of mouse PSP mRNA. Nucleic Acids Res. 1985 Jan 11;13(1):1–13. doi: 10.1093/nar/13.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Miller M. W., Duhl D. M., Vrieling H., Cordes S. P., Ollmann M. M., Winkes B. M., Barsh G. S. Cloning of the mouse agouti gene predicts a secreted protein ubiquitously expressed in mice carrying the lethal yellow mutation. Genes Dev. 1993 Mar;7(3):454–467. doi: 10.1101/gad.7.3.454. [DOI] [PubMed] [Google Scholar]
  20. Orr H. T., Chung M. Y., Banfi S., Kwiatkowski T. J., Jr, Servadio A., Beaudet A. L., McCall A. E., Duvick L. A., Ranum L. P., Zoghbi H. Y. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet. 1993 Jul;4(3):221–226. doi: 10.1038/ng0793-221. [DOI] [PubMed] [Google Scholar]
  21. RUSSELL W. L. X-ray-induced mutations in mice. Cold Spring Harb Symp Quant Biol. 1951;16:327–336. doi: 10.1101/sqb.1951.016.01.024. [DOI] [PubMed] [Google Scholar]
  22. Siracusa L. D., Buchberg A. M., Copeland N. G., Jenkins N. A. Recombinant inbred strain and interspecific backcross analysis of molecular markers flanking the murine agouti coat color locus. Genetics. 1989 Jul;122(3):669–679. doi: 10.1093/genetics/122.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Siracusa L. D., Russell L. B., Jenkins N. A., Copeland N. G. Allelic variation within the Emv-15 locus defines genomic sequences closely linked to the agouti locus on mouse chromosome 2. Genetics. 1987 Sep;117(1):85–92. doi: 10.1093/genetics/117.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sturtevant A H. The Effects of Unequal Crossing over at the Bar Locus in Drosophila. Genetics. 1925 Mar;10(2):117–147. doi: 10.1093/genetics/10.2.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tsubota S. I., Rosenberg D., Szostak H., Rubin D., Schedl P. The cloning of the Bar region and the B breakpoint in Drosophila melanogaster: evidence for a transposon-induced rearrangement. Genetics. 1989 Aug;122(4):881–890. doi: 10.1093/genetics/122.4.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wolff R. K., Plaetke R., Jeffreys A. J., White R. Unequal crossingover between homologous chromosomes is not the major mechanism involved in the generation of new alleles at VNTR loci. Genomics. 1989 Aug;5(2):382–384. doi: 10.1016/0888-7543(89)90076-1. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES