Skip to main content
Genetics logoLink to Genetics
. 1994 Aug;137(4):999–1018. doi: 10.1093/genetics/137.4.999

The Dpy-30 Gene Encodes an Essential Component of the Caenorhabditis Elegans Dosage Compensation Machinery

D R Hsu 1, B J Meyer 1
PMCID: PMC1206076  PMID: 7982580

Abstract

The need to regulate X chromosome expression in Caenorhabditis elegans arises as a consequence of the primary sex-determining signal, the X/A ratio (the ratio of X chromosomes to sets of autosomes), which directs 1X/2A animals to develop as males and 2X/2A animals to develop as hermaphrodites. C. elegans possesses a dosage compensation mechanism that equalizes X chromosome expression between the two sexes despite their disparity in X chromosome dosage. Previous genetic analysis led to the identification of four autosomal genes, dpy-21, dpy-26, dpy-27 and dpy-28, whose products are essential in XX animals for proper dosage compensation, but not for sex determination. We report the identification and characterization of dpy-30, an essential component of the dosage compensation machinery. Putative null mutations in dpy-30 disrupt dosage compensation and cause a severe maternal-effect, XX-specific lethality. Rare survivors of the dpy-30 lethality are dumpy and express their X-linked genes at higher than wild-type levels. These dpy-30 mutant phenotypes superficially resemble those caused by mutations in dpy-26, dpy-27 and dpy-28; however, detailed phenotypic analysis reveals important differences that distinguish dpy-30 from these genes. In contrast to the XX-specific lethality caused by mutations in the other dpy genes, the XX-specific lethality caused by dpy-30 mutations is completely penetrant and temperature sensitive. In addition, unlike the other genes, dpy-30 is required for the normal development of XO animals. Although dpy-30 mutations do not significantly affect the viability of XO animals, they do cause them to be developmentally delayed and to possess numerous morphological and behavioral abnormalities. Finally, dpy-30 mutations can dramatically influence the choice of sexual fate in animals with an ambiguous sexual identity, despite having no apparent effect on the sexual phenotype of otherwise wild-type animals. Paradoxically, depending on the genetic background, dpy-30 mutations cause either masculinization or feminization, thus revealing the complex regulatory relationship between the sex determination and dosage compensation processes. The novel phenotypes caused by dpy-30 mutations suggest that in addition to acting in the dosage compensation process, dpy-30 may play a more general role in the development of both XX and XO animals.

Full Text

The Full Text of this article is available as a PDF (7.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambros V., Horvitz H. R. The lin-14 locus of Caenorhabditis elegans controls the time of expression of specific postembryonic developmental events. Genes Dev. 1987 Jun;1(4):398–414. doi: 10.1101/gad.1.4.398. [DOI] [PubMed] [Google Scholar]
  2. Baker B. S., Belote J. M. Sex determination and dosage compensation in Drosophila melanogaster. Annu Rev Genet. 1983;17:345–393. doi: 10.1146/annurev.ge.17.120183.002021. [DOI] [PubMed] [Google Scholar]
  3. Cline T. W. The Drosophila sex determination signal: how do flies count to two? Trends Genet. 1993 Nov;9(11):385–390. doi: 10.1016/0168-9525(93)90138-8. [DOI] [PubMed] [Google Scholar]
  4. Cline T. W. The affairs of daughterless and the promiscuity of developmental regulators. Cell. 1989 Oct 20;59(2):231–234. doi: 10.1016/0092-8674(89)90280-8. [DOI] [PubMed] [Google Scholar]
  5. DeLong L., Casson L. P., Meyer B. J. Assessment of X chromosome dosage compensation in Caenorhabditis elegans by phenotypic analysis of lin-14. Genetics. 1987 Dec;117(4):657–670. doi: 10.1093/genetics/117.4.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dibb N. J., Maruyama I. N., Krause M., Karn J. Sequence analysis of the complete Caenorhabditis elegans myosin heavy chain gene family. J Mol Biol. 1989 Feb 5;205(3):603–613. doi: 10.1016/0022-2836(89)90229-5. [DOI] [PubMed] [Google Scholar]
  7. Donahue L. M., Quarantillo B. A., Wood W. B. Molecular analysis of X chromosome dosage compensation in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7600–7604. doi: 10.1073/pnas.84.21.7600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ferguson E. L., Horvitz H. R. Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans. Genetics. 1985 May;110(1):17–72. doi: 10.1093/genetics/110.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ferguson E. L., Sternberg P. W., Horvitz H. R. A genetic pathway for the specification of the vulval cell lineages of Caenorhabditis elegans. Nature. 1987 Mar 19;326(6110):259–267. doi: 10.1038/326259a0. [DOI] [PubMed] [Google Scholar]
  10. Grant S. G., Chapman V. M. Mechanisms of X-chromosome regulation. Annu Rev Genet. 1988;22:199–233. doi: 10.1146/annurev.ge.22.120188.001215. [DOI] [PubMed] [Google Scholar]
  11. Gubbay J., Collignon J., Koopman P., Capel B., Economou A., Münsterberg A., Vivian N., Goodfellow P., Lovell-Badge R. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature. 1990 Jul 19;346(6281):245–250. doi: 10.1038/346245a0. [DOI] [PubMed] [Google Scholar]
  12. Hodgkin J. A., Brenner S. Mutations causing transformation of sexual phenotype in the nematode Caenorhabditis elegans. Genetics. 1977 Jun;86(2 Pt 1):275–287. [PMC free article] [PubMed] [Google Scholar]
  13. Hodgkin J. A genetic analysis of the sex-determining gene, tra-1, in the nematode Caenorhabditis elegans. Genes Dev. 1987 Sep;1(7):731–745. doi: 10.1101/gad.1.7.731. [DOI] [PubMed] [Google Scholar]
  14. Hodgkin J., Horvitz H. R., Brenner S. Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS. Genetics. 1979 Jan;91(1):67–94. doi: 10.1093/genetics/91.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hodgkin J. More sex-determination mutants of Caenorhabditis elegans. Genetics. 1980 Nov;96(3):649–664. doi: 10.1093/genetics/96.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hodgkin J. Sex determination compared in Drosophila and Caenorhabditis. Nature. 1990 Apr 19;344(6268):721–728. doi: 10.1038/344721a0. [DOI] [PubMed] [Google Scholar]
  17. Horvitz H. R., Brenner S., Hodgkin J., Herman R. K. A uniform genetic nomenclature for the nematode Caenorhabditis elegans. Mol Gen Genet. 1979 Sep;175(2):129–133. doi: 10.1007/BF00425528. [DOI] [PubMed] [Google Scholar]
  18. Klein R. D., Meyer B. J. Independent domains of the Sdc-3 protein control sex determination and dosage compensation in C. elegans. Cell. 1993 Feb 12;72(3):349–364. doi: 10.1016/0092-8674(93)90113-5. [DOI] [PubMed] [Google Scholar]
  19. Koopman P., Gubbay J., Vivian N., Goodfellow P., Lovell-Badge R. Male development of chromosomally female mice transgenic for Sry. Nature. 1991 May 9;351(6322):117–121. doi: 10.1038/351117a0. [DOI] [PubMed] [Google Scholar]
  20. Kuwabara P. E., Kimble J. Molecular genetics of sex determination in C. elegans. Trends Genet. 1992 May;8(5):164–168. doi: 10.1016/0168-9525(92)90218-s. [DOI] [PubMed] [Google Scholar]
  21. L'Hernault S. W., Shakes D. C., Ward S. Developmental genetics of chromosome I spermatogenesis-defective mutants in the nematode Caenorhabditis elegans. Genetics. 1988 Oct;120(2):435–452. doi: 10.1093/genetics/120.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Meneely P. M., Wood W. B. Genetic analysis of X-chromosome dosage compensation in Caenorhabditis elegans. Genetics. 1987 Sep;117(1):25–41. doi: 10.1093/genetics/117.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Meyer B. J., Casson L. P. Caenorhabditis elegans compensates for the difference in X chromosome dosage between the sexes by regulating transcript levels. Cell. 1986 Dec 26;47(6):871–881. doi: 10.1016/0092-8674(86)90802-0. [DOI] [PubMed] [Google Scholar]
  24. Nusbaum C., Meyer B. J. The Caenorhabditis elegans gene sdc-2 controls sex determination and dosage compensation in XX animals. Genetics. 1989 Jul;122(3):579–593. doi: 10.1093/genetics/122.3.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Plenefisch J. D., DeLong L., Meyer B. J. Genes that implement the hermaphrodite mode of dosage compensation in Caenorhabditis elegans. Genetics. 1989 Jan;121(1):57–76. doi: 10.1093/genetics/121.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sinclair A. H., Berta P., Palmer M. S., Hawkins J. R., Griffiths B. L., Smith M. J., Foster J. W., Frischauf A. M., Lovell-Badge R., Goodfellow P. N. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature. 1990 Jul 19;346(6281):240–244. doi: 10.1038/346240a0. [DOI] [PubMed] [Google Scholar]
  27. Trent C., Tsuing N., Horvitz H. R. Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics. 1983 Aug;104(4):619–647. doi: 10.1093/genetics/104.4.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Trent C., Wood W. B., Horvitz H. R. A novel dominant transformer allele of the sex-determining gene her-1 of Caenorhabditis elegans. Genetics. 1988 Sep;120(1):145–157. doi: 10.1093/genetics/120.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Villeneuve A. M., Meyer B. J. The regulatory hierarchy controlling sex determination and dosage compensation in Caenorhabditis elegans. Adv Genet. 1990;27:117–188. doi: 10.1016/s0065-2660(08)60025-5. [DOI] [PubMed] [Google Scholar]
  30. Villeneuve A. M., Meyer B. J. The role of sdc-1 in the sex determination and dosage compensation decisions in Caenorhabditis elegans. Genetics. 1990 Jan;124(1):91–114. doi: 10.1093/genetics/124.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Villeneuve A. M., Meyer B. J. sdc-1: a link between sex determination and dosage compensation in C. elegans. Cell. 1987 Jan 16;48(1):25–37. doi: 10.1016/0092-8674(87)90352-7. [DOI] [PubMed] [Google Scholar]
  32. Waterston R. H. A second informational suppressor, SUP-7 X, in Caenorhabditis elegans. Genetics. 1981 Feb;97(2):307–325. doi: 10.1093/genetics/97.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wightman B., Bürglin T. R., Gatto J., Arasu P., Ruvkun G. Negative regulatory sequences in the lin-14 3'-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. Genes Dev. 1991 Oct;5(10):1813–1824. doi: 10.1101/gad.5.10.1813. [DOI] [PubMed] [Google Scholar]
  34. Wills N., Gesteland R. F., Karn J., Barnett L., Bolten S., Waterston R. H. The genes sup-7 X and sup-5 III of C. elegans suppress amber nonsense mutations via altered transfer RNA. Cell. 1983 Jun;33(2):575–583. doi: 10.1016/0092-8674(83)90438-5. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES