Skip to main content
Genetics logoLink to Genetics
. 1994 Sep;138(1):103–110. doi: 10.1093/genetics/138.1.103

Genetic Variability of the β-Tubulin Genes in Benzimidazole-Susceptible and -Resistant Strains of Haemonchus Contortus

R N Beech 1, R K Prichard 1, M E Scott 1
PMCID: PMC1206121  PMID: 8001777

Abstract

Benzimidazole anthelmintics are the most common chemotherapeutic agents used to remove intestinal helminths from farm animals. The development of drug resistance within helminth populations is wide-spread and can render these drugs essentially useless. The mechanism of benzimidazole resistance appears to be common to many species ranging from fungi to nematodes and involves alterations in the genes encoding β-tubulin. During the selection process resulting in resistance, there must be quantitative changes in the population gene pool. Knowledge of these changes would indicate the mechanisms underlying the spread of resistance in the population, which in turn could be used to design more effective drug administration strategies. To this end we have identified allelic variation at two β-tubulin genes in Haemonchus contortus using restriction map analysis of individual adults. Extremely high levels of variation were identified at both loci within a susceptible strain. In two independently derived benzimidazole resistant strains, allele frequencies at both loci were significantly different from the susceptible strain but not from each other. The same alleles at both loci, in both resistant strains, were favored by selection with benzimidazoles, suggesting that both loci are involved in determining benzimidazole resistance. These data confirm that changes in allele frequency, rather than novel genetic rearrangements induced by exposure to the drug, explain the changes associated with benzimidazole resistance. These results also show that any DNA based test for the development of benzimidazole resistance must take into account the frequency of alleles present in the population and not simply test for the presence or absence of specific allelic types.

Full Text

The Full Text of this article is available as a PDF (921.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson T. J., Romero-Abal M. E., Jaenike J. Genetic structure and epidemiology of Ascaris populations: patterns of host affiliation in Guatemala. Parasitology. 1993 Sep;107(Pt 3):319–334. doi: 10.1017/s0031182000079294. [DOI] [PubMed] [Google Scholar]
  2. Borgers M., De Nollin S., De Brabander M., Thienpont D. Influence of the anthelmintic mebendazole on microtubules and intracellular organelle movement in nematode intestinal cells. Am J Vet Res. 1975 Aug;36(08):1153–1166. [PubMed] [Google Scholar]
  3. Borgers M., De Nollin S. Ultrastructural changes in Ascaris suum intestine after mebendazole treatment in vivo. J Parasitol. 1975 Feb;61(1):110–122. [PubMed] [Google Scholar]
  4. Cleveland D. W., Sullivan K. F. Molecular biology and genetics of tubulin. Annu Rev Biochem. 1985;54:331–365. doi: 10.1146/annurev.bi.54.070185.001555. [DOI] [PubMed] [Google Scholar]
  5. Colglazier M. L., Kates K. C., Enzie F. D. Cambendazole-resistant Haemonchus contortus strain in sheep: further experimental development. J Parasitol. 1974 Apr;60(2):289–292. [PubMed] [Google Scholar]
  6. Davidse L. C., Flach W. Differential binding of methyl benzimidazol-2-yl carbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans. J Cell Biol. 1977 Jan;72(1):174–193. doi: 10.1083/jcb.72.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Driscoll M., Dean E., Reilly E., Bergholz E., Chalfie M. Genetic and molecular analysis of a Caenorhabditis elegans beta-tubulin that conveys benzimidazole sensitivity. J Cell Biol. 1989 Dec;109(6 Pt 1):2993–3003. doi: 10.1083/jcb.109.6.2993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Foster K. E., Burland T. G., Gull K. A mutant beta-tubulin confers resistance to the action of benzimidazole-carbamate microtubule inhibitors both in vivo and in vitro. Eur J Biochem. 1987 Mar 16;163(3):449–455. doi: 10.1111/j.1432-1033.1987.tb10890.x. [DOI] [PubMed] [Google Scholar]
  9. Gaillard C., Strauss F. Ethanol precipitation of DNA with linear polyacrylamide as carrier. Nucleic Acids Res. 1990 Jan 25;18(2):378–378. doi: 10.1093/nar/18.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Geary T. G., Nulf S. C., Favreau M. A., Tang L., Prichard R. K., Hatzenbuhler N. T., Shea M. H., Alexander S. J., Klein R. D. Three beta-tubulin cDNAs from the parasitic nematode Haemonchus contortus. Mol Biochem Parasitol. 1992 Feb;50(2):295–306. doi: 10.1016/0166-6851(92)90227-b. [DOI] [PubMed] [Google Scholar]
  11. Hudson R. R. Estimating genetic variability with restriction endonucleases. Genetics. 1982 Apr;100(4):711–719. doi: 10.1093/genetics/100.4.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kwa M. S., Kooyman F. N., Boersema J. H., Roos M. H. Effect of selection for benzimidazole resistance in Haemonchus contortus on beta-tubulin isotype 1 and isotype 2 genes. Biochem Biophys Res Commun. 1993 Mar 15;191(2):413–419. doi: 10.1006/bbrc.1993.1233. [DOI] [PubMed] [Google Scholar]
  13. Kwa M. S., Veenstra J. G., Roos M. H. Molecular characterisation of beta-tubulin genes present in benzimidazole-resistant populations of Haemonchus contortus. Mol Biochem Parasitol. 1993 Jul;60(1):133–143. doi: 10.1016/0166-6851(93)90036-w. [DOI] [PubMed] [Google Scholar]
  14. Lacey E., Prichard R. K. Interactions of benzimidazoles (BZ) with tubulin from BZ-sensitive and BZ-resistant isolates of Haemonchus contortus. Mol Biochem Parasitol. 1986 May;19(2):171–181. doi: 10.1016/0166-6851(86)90122-2. [DOI] [PubMed] [Google Scholar]
  15. Lacey E. The role of the cytoskeletal protein, tubulin, in the mode of action and mechanism of drug resistance to benzimidazoles. Int J Parasitol. 1988 Nov;18(7):885–936. doi: 10.1016/0020-7519(88)90175-0. [DOI] [PubMed] [Google Scholar]
  16. Lubega G. W., Prichard R. K. Beta-tubulin and benzimidazole resistance in the sheep nematode Haemonchus contortus. Mol Biochem Parasitol. 1991 Jul;47(1):129–137. doi: 10.1016/0166-6851(91)90155-y. [DOI] [PubMed] [Google Scholar]
  17. Lubega G. W., Prichard R. K. Interaction of benzimidazole anthelmintics with Haemonchus contortus tubulin: binding affinity and anthelmintic efficacy. Exp Parasitol. 1991 Aug;73(2):203–213. doi: 10.1016/0014-4894(91)90023-p. [DOI] [PubMed] [Google Scholar]
  18. Lubega G. W., Prichard R. K. Specific interaction of benzimidazole anthelmintics with tubulin from developing stages of thiabendazole-susceptible and -resistant Haemonchus contortus. Biochem Pharmacol. 1991 Jan 1;41(1):93–101. doi: 10.1016/0006-2952(91)90015-w. [DOI] [PubMed] [Google Scholar]
  19. Lubega G. W., Prichard R. K. Specific interaction of benzimidazole anthelmintics with tubulin: high-affinity binding and benzimidazole resistance in Haemonchus contortus. Mol Biochem Parasitol. 1990 Jan 15;38(2):221–232. doi: 10.1016/0166-6851(90)90025-h. [DOI] [PubMed] [Google Scholar]
  20. Lynch M., Crease T. J. The analysis of population survey data on DNA sequence variation. Mol Biol Evol. 1990 Jul;7(4):377–394. doi: 10.1093/oxfordjournals.molbev.a040607. [DOI] [PubMed] [Google Scholar]
  21. McKellar Q. A., Scott E. W. The benzimidazole anthelmintic agents--a review. J Vet Pharmacol Ther. 1990 Sep;13(3):223–247. doi: 10.1111/j.1365-2885.1990.tb00773.x. [DOI] [PubMed] [Google Scholar]
  22. Nei M., Li W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269–5273. doi: 10.1073/pnas.76.10.5269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nei M., Tajima F. DNA polymorphism detectable by restriction endonucleases. Genetics. 1981 Jan;97(1):145–163. doi: 10.1093/genetics/97.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Orbach M. J., Porro E. B., Yanofsky C. Cloning and characterization of the gene for beta-tubulin from a benomyl-resistant mutant of Neurospora crassa and its use as a dominant selectable marker. Mol Cell Biol. 1986 Jul;6(7):2452–2461. doi: 10.1128/mcb.6.7.2452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Prichard R. K. Anthelmintic resistance in nematodes: extent, recent understanding and future directions for control and research. Int J Parasitol. 1990 Jul;20(4):515–523. doi: 10.1016/0020-7519(90)90199-w. [DOI] [PubMed] [Google Scholar]
  26. Prichard R. K., Hall C. A., Kelly J. D., Martin I. C., Donald A. D. The problem of anthelmintic resistance in nematodes. Aust Vet J. 1980 May;56(5):239–251. doi: 10.1111/j.1751-0813.1980.tb15983.x. [DOI] [PubMed] [Google Scholar]
  27. Quinlan R. A., Pogson C. I., Gull K. The influence of the microtubule inhibitor, methyl benzimidazol-2-yl-carbamate (MBC) on nuclear division and the cell cycle in Saccharomyces cerevisiae. J Cell Sci. 1980 Dec;46:341–352. doi: 10.1242/jcs.46.1.341. [DOI] [PubMed] [Google Scholar]
  28. Roos M. H., Boersema J. H., Borgsteede F. H., Cornelissen J., Taylor M., Ruitenberg E. J. Molecular analysis of selection for benzimidazole resistance in the sheep parasite Haemonchus contortus. Mol Biochem Parasitol. 1990 Nov;43(1):77–88. doi: 10.1016/0166-6851(90)90132-6. [DOI] [PubMed] [Google Scholar]
  29. Sangster N. C., Prichard R. K., Lacey E. Tubulin and benzimidazole-resistance in Trichostrongylus colubriformis (Nematoda). J Parasitol. 1985 Oct;71(5):645–651. [PubMed] [Google Scholar]
  30. Slatkin M. Detecting small amounts of gene flow from phylogenies of alleles. Genetics. 1989 Mar;121(3):609–612. doi: 10.1093/genetics/121.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Slatkin M. Testing neutrality in subdivided populations. Genetics. 1982 Mar;100(3):533–545. doi: 10.1093/genetics/100.3.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Strobeck C. Average number of nucleotide differences in a sample from a single subpopulation: a test for population subdivision. Genetics. 1987 Sep;117(1):149–153. doi: 10.1093/genetics/117.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sullivan K. F. Structure and utilization of tubulin isotypes. Annu Rev Cell Biol. 1988;4:687–716. doi: 10.1146/annurev.cb.04.110188.003351. [DOI] [PubMed] [Google Scholar]
  34. Thomas J. H., Neff N. F., Botstein D. Isolation and characterization of mutations in the beta-tubulin gene of Saccharomyces cerevisiae. Genetics. 1985 Dec;111(4):715–734. doi: 10.1093/genetics/111.4.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Thomas W. K., Wilson A. C. Mode and tempo of molecular evolution in the nematode caenorhabditis: cytochrome oxidase II and calmodulin sequences. Genetics. 1991 Jun;128(2):269–279. doi: 10.1093/genetics/128.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yasuda N., Kimura M. A gene-counting method of maximum likelihood for estimating gene frequencies in ABO and ABO-like systems. Ann Hum Genet. 1968 May;31(4):409–420. doi: 10.1111/j.1469-1809.1968.tb00574.x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES