Abstract
Phenotypic analysis of the daf-11 and daf-21 mutants of Caenorhabditis elegans suggests that they have defects in components shared by processes analogous to vertebrate taste and olfaction. daf-11 and daf-21 mutations were previously shown to cause inappropriate response to the dauer-inducing pheromone. By mutational analysis and by disabling specific chemosensory sensilla with a laser, we show that neurons in the amphid sensilla are required for this pheromone response. Using behavioral assays, we find that daf-11 and daf-21 mutants are not defective in avoidance of certain non-volatile repellents, but are defective in taxis to non-volatile attractants. In addition, both mutants are defective in taxis to volatile attractants detected primarily by the amphid neuron AWC, but respond normally to volatile attractants detected primarily by AWA. We propose that daf-11 and daf-21 mediate sensory transduction for both volatile and non-volatile compounds in specific amphid neurons.
Full Text
The Full Text of this article is available as a PDF (4.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abe K., Kusakabe Y., Tanemura K., Emori Y., Arai S. Multiple genes for G protein-coupled receptors and their expression in lingual epithelia. FEBS Lett. 1993 Feb 1;316(3):253–256. doi: 10.1016/0014-5793(93)81302-g. [DOI] [PubMed] [Google Scholar]
- Albert P. S., Brown S. J., Riddle D. L. Sensory control of dauer larva formation in Caenorhabditis elegans. J Comp Neurol. 1981 May 20;198(3):435–451. doi: 10.1002/cne.901980305. [DOI] [PubMed] [Google Scholar]
- Avery L., Bargmann C. I., Horvitz H. R. The Caenorhabditis elegans unc-31 gene affects multiple nervous system-controlled functions. Genetics. 1993 Jun;134(2):455–464. doi: 10.1093/genetics/134.2.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Avery L., Horvitz H. R. Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans. Neuron. 1989 Oct;3(4):473–485. doi: 10.1016/0896-6273(89)90206-7. [DOI] [PubMed] [Google Scholar]
- Bakalyar H. A., Reed R. R. Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science. 1990 Dec 7;250(4986):1403–1406. doi: 10.1126/science.2255909. [DOI] [PubMed] [Google Scholar]
- Bargmann C. I., Horvitz H. R. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron. 1991 Nov;7(5):729–742. doi: 10.1016/0896-6273(91)90276-6. [DOI] [PubMed] [Google Scholar]
- Bargmann C. I., Horvitz H. R. Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science. 1991 Mar 8;251(4998):1243–1246. doi: 10.1126/science.2006412. [DOI] [PubMed] [Google Scholar]
- Bargmann C. I., Thomas J. H., Horvitz H. R. Chemosensory cell function in the behavior and development of Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol. 1990;55:529–538. doi: 10.1101/sqb.1990.055.01.051. [DOI] [PubMed] [Google Scholar]
- Cassada R. C., Russell R. L. The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol. 1975 Oct;46(2):326–342. doi: 10.1016/0012-1606(75)90109-8. [DOI] [PubMed] [Google Scholar]
- Culotti J. G., Russell R. L. Osmotic avoidance defective mutants of the nematode Caenorhabditis elegans. Genetics. 1978 Oct;90(2):243–256. doi: 10.1093/genetics/90.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dusenbery D. B., Sheridan R. E., Russell R. L. Chemotaxis-defective mutants of the nematode Caenorhabditis elegans. Genetics. 1975 Jun;80(2):297–309. doi: 10.1093/genetics/80.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finney M., Ruvkun G. The unc-86 gene product couples cell lineage and cell identity in C. elegans. Cell. 1990 Nov 30;63(5):895–905. doi: 10.1016/0092-8674(90)90493-x. [DOI] [PubMed] [Google Scholar]
- Firestein S., Shepherd G. M., Werblin F. S. Time course of the membrane current underlying sensory transduction in salamander olfactory receptor neurones. J Physiol. 1990 Nov;430:135–158. doi: 10.1113/jphysiol.1990.sp018286. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Golden J. W., Riddle D. L. A gene affecting production of the Caenorhabditis elegans dauer-inducing pheromone. Mol Gen Genet. 1985;198(3):534–536. doi: 10.1007/BF00332953. [DOI] [PubMed] [Google Scholar]
- Golden J. W., Riddle D. L. A pheromone-induced developmental switch in Caenorhabditis elegans: Temperature-sensitive mutants reveal a wild-type temperature-dependent process. Proc Natl Acad Sci U S A. 1984 Feb;81(3):819–823. doi: 10.1073/pnas.81.3.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall D. H., Russell R. L. The posterior nervous system of the nematode Caenorhabditis elegans: serial reconstruction of identified neurons and complete pattern of synaptic interactions. J Neurosci. 1991 Jan;11(1):1–22. doi: 10.1523/JNEUROSCI.11-01-00001.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horvitz H. R., Brenner S., Hodgkin J., Herman R. K. A uniform genetic nomenclature for the nematode Caenorhabditis elegans. Mol Gen Genet. 1979 Sep;175(2):129–133. doi: 10.1007/BF00425528. [DOI] [PubMed] [Google Scholar]
- Lancet D., Lazard D., Heldman J., Khen M., Nef P. Molecular transduction in smell and taste. Cold Spring Harb Symp Quant Biol. 1988;53(Pt 1):343–348. doi: 10.1101/sqb.1988.053.01.041. [DOI] [PubMed] [Google Scholar]
- Lewis J. A., Hodgkin J. A. Specific neuroanatomical changes in chemosensory mutants of the nematode Caenorhabditis elegans. J Comp Neurol. 1977 Apr 1;172(3):489–510. doi: 10.1002/cne.901720306. [DOI] [PubMed] [Google Scholar]
- Lilly M., Carlson J. smellblind: a gene required for Drosophila olfaction. Genetics. 1990 Feb;124(2):293–302. doi: 10.1093/genetics/124.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lilly M., Kreber R., Ganetzky B., Carlson J. R. Evidence that the Drosophila olfactory mutant smellblind defines a novel class of sodium channel mutation. Genetics. 1994 Mar;136(3):1087–1096. doi: 10.1093/genetics/136.3.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lowe G., Nakamura T., Gold G. H. Adenylate cyclase mediates olfactory transduction for a wide variety of odorants. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5641–5645. doi: 10.1073/pnas.86.14.5641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McLaughlin S. K., McKinnon P. J., Margolskee R. F. Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature. 1992 Jun 18;357(6379):563–569. doi: 10.1038/357563a0. [DOI] [PubMed] [Google Scholar]
- Pace U., Hanski E., Salomon Y., Lancet D. Odorant-sensitive adenylate cyclase may mediate olfactory reception. Nature. 1985 Jul 18;316(6025):255–258. doi: 10.1038/316255a0. [DOI] [PubMed] [Google Scholar]
- Pace U., Lancet D. Olfactory GTP-binding protein: signal-transducing polypeptide of vertebrate chemosensory neurons. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4947–4951. doi: 10.1073/pnas.83.13.4947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perkins L. A., Hedgecock E. M., Thomson J. N., Culotti J. G. Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev Biol. 1986 Oct;117(2):456–487. doi: 10.1016/0012-1606(86)90314-3. [DOI] [PubMed] [Google Scholar]
- Pfeuffer E., Mollner S., Lancet D., Pfeuffer T. Olfactory adenylyl cyclase. Identification and purification of a novel enzyme form. J Biol Chem. 1989 Nov 5;264(31):18803–18807. [PubMed] [Google Scholar]
- Ramaswami M., Tanouye M. A. Two sodium-channel genes in Drosophila: implications for channel diversity. Proc Natl Acad Sci U S A. 1989 Mar;86(6):2079–2082. doi: 10.1073/pnas.86.6.2079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riddle D. L., Swanson M. M., Albert P. S. Interacting genes in nematode dauer larva formation. Nature. 1981 Apr 23;290(5808):668–671. doi: 10.1038/290668a0. [DOI] [PubMed] [Google Scholar]
- Shakir M. A., Miwa J., Siddiqui S. S. A role of ADF chemosensory neurones in dauer formation behaviour in C. elegans. Neuroreport. 1993 Sep 3;4(10):1151–1154. [PubMed] [Google Scholar]
- Shepherd G. M. Sensory transduction: entering the mainstream of membrane signaling. Cell. 1991 Nov 29;67(5):845–851. doi: 10.1016/0092-8674(91)90358-6. [DOI] [PubMed] [Google Scholar]
- Sklar P. B., Anholt R. R., Snyder S. H. The odorant-sensitive adenylate cyclase of olfactory receptor cells. Differential stimulation by distinct classes of odorants. J Biol Chem. 1986 Nov 25;261(33):15538–15543. [PubMed] [Google Scholar]
- Sternberg P. W., Horvitz H. R. lin-17 mutations of Caenorhabditis elegans disrupt certain asymmetric cell divisions. Dev Biol. 1988 Nov;130(1):67–73. doi: 10.1016/0012-1606(88)90414-9. [DOI] [PubMed] [Google Scholar]
- Striem B. J., Pace U., Zehavi U., Naim M., Lancet D. Sweet tastants stimulate adenylate cyclase coupled to GTP-binding protein in rat tongue membranes. Biochem J. 1989 May 15;260(1):121–126. doi: 10.1042/bj2600121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sulston J. E., Albertson D. G., Thomson J. N. The Caenorhabditis elegans male: postembryonic development of nongonadal structures. Dev Biol. 1980 Aug;78(2):542–576. doi: 10.1016/0012-1606(80)90352-8. [DOI] [PubMed] [Google Scholar]
- Thomas J. H., Birnby D. A., Vowels J. J. Evidence for parallel processing of sensory information controlling dauer formation in Caenorhabditis elegans. Genetics. 1993 Aug;134(4):1105–1117. doi: 10.1093/genetics/134.4.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vowels J. J., Thomas J. H. Genetic analysis of chemosensory control of dauer formation in Caenorhabditis elegans. Genetics. 1992 Jan;130(1):105–123. doi: 10.1093/genetics/130.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward S. Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proc Natl Acad Sci U S A. 1973 Mar;70(3):817–821. doi: 10.1073/pnas.70.3.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward S., Thomson N., White J. G., Brenner S. Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans.?2UU. J Comp Neurol. 1975 Apr 1;160(3):313–337. doi: 10.1002/cne.901600305. [DOI] [PubMed] [Google Scholar]