Skip to main content
Genetics logoLink to Genetics
. 1994 Oct;138(2):317–327. doi: 10.1093/genetics/138.2.317

Sequenced Alleles of the Caenorhabditis Elegans Sex-Determining Gene Her-1 Include a Novel Class of Conditional Promoter Mutations

M D Perry 1, C Trent 1, B Robertson 1, C Chamblin 1, W B Wood 1
PMCID: PMC1206151  PMID: 7828816

Abstract

In the control of Caenorhabditis elegans sex determination, the her-1 gene must normally be activated to allow male development of XO animals and deactivated to allow hermaphrodite development of XX animals. The gene is regulated at the transcriptional level and has two nested male-specific transcripts. The larger of these encodes a small, novel, cysteine-rich protein responsible for masculinizing activity. Of the 32 extant mutant alleles, 30 cause partial or complete loss of masculinizing function (lf), while 2 are gain-of-function (gf) alleles resulting in abnormal masculinization of XX animals. We have identified the DNA sequence changes in each of these 32 alleles. Most affect the protein coding functions of the gene, but six are in the promoter region, including the two gf mutations. These two mutations may define a binding site for negative regulators of her-1. Three of the four remaining promoter mutations are single base changes that cause, surprisingly, temperature-sensitive loss of her-1 function. Such conditional promoter mutations have previously not been found among either prokaryotic or eukaryotic mutants analyzed at the molecular level.

Full Text

The Full Text of this article is available as a PDF (4.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aroian R. V., Levy A. D., Koga M., Ohshima Y., Kramer J. M., Sternberg P. W. Splicing in Caenorhabditis elegans does not require an AG at the 3' splice acceptor site. Mol Cell Biol. 1993 Jan;13(1):626–637. doi: 10.1128/mcb.13.1.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Casanova J. L., Pannetier C., Jaulin C., Kourilsky P. Optimal conditions for directly sequencing double-stranded PCR products with sequenase. Nucleic Acids Res. 1990 Jul 11;18(13):4028–4028. doi: 10.1093/nar/18.13.4028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coulson A., Sulston J., Brenner S., Karn J. Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7821–7825. doi: 10.1073/pnas.83.20.7821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DeLong L., Plenefisch J. D., Klein R. D., Meyer B. J. Feedback control of sex determination by dosage compensation revealed through Caenorhabditis elegans sdc-3 mutations. Genetics. 1993 Apr;133(4):875–896. doi: 10.1093/genetics/133.4.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Emmons S. W., Klass M. R., Hirsh D. Analysis of the constancy of DNA sequences during development and evolution of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1333–1337. doi: 10.1073/pnas.76.3.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ferguson E. L., Horvitz H. R. The multivulva phenotype of certain Caenorhabditis elegans mutants results from defects in two functionally redundant pathways. Genetics. 1989 Sep;123(1):109–121. doi: 10.1093/genetics/123.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Frischauf A. M., Lehrach H., Poustka A., Murray N. Lambda replacement vectors carrying polylinker sequences. J Mol Biol. 1983 Nov 15;170(4):827–842. doi: 10.1016/s0022-2836(83)80190-9. [DOI] [PubMed] [Google Scholar]
  8. Han M., Sternberg P. W. Analysis of dominant-negative mutations of the Caenorhabditis elegans let-60 ras gene. Genes Dev. 1991 Dec;5(12A):2188–2198. doi: 10.1101/gad.5.12a.2188. [DOI] [PubMed] [Google Scholar]
  9. Hodgkin J. Genetic sex determination mechanisms and evolution. Bioessays. 1992 Apr;14(4):253–261. doi: 10.1002/bies.950140409. [DOI] [PubMed] [Google Scholar]
  10. Hodgkin J., Horvitz H. R., Brenner S. Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS. Genetics. 1979 Jan;91(1):67–94. doi: 10.1093/genetics/91.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hodgkin J. More sex-determination mutants of Caenorhabditis elegans. Genetics. 1980 Nov;96(3):649–664. doi: 10.1093/genetics/96.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Horvitz H. R., Sulston J. E. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics. 1980 Oct;96(2):435–454. doi: 10.1093/genetics/96.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hunter C. P., Wood W. B. Evidence from mosaic analysis of the masculinizing gene her-1 for cell interactions in C. elegans sex determination. Nature. 1992 Feb 6;355(6360):551–555. doi: 10.1038/355551a0. [DOI] [PubMed] [Google Scholar]
  14. Jackson I. J. A reappraisal of non-consensus mRNA splice sites. Nucleic Acids Res. 1991 Jul 25;19(14):3795–3798. doi: 10.1093/nar/19.14.3795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kim S. K., Horvitz H. R. The Caenorhabditis elegans gene lin-10 is broadly expressed while required specifically for the determination of vulval cell fates. Genes Dev. 1990 Mar;4(3):357–371. doi: 10.1101/gad.4.3.357. [DOI] [PubMed] [Google Scholar]
  16. Kretz K. A., Carson G. S., O'Brien J. S. Direct sequencing from low-melt agarose with Sequenase. Nucleic Acids Res. 1989 Jul 25;17(14):5864–5864. doi: 10.1093/nar/17.14.5864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kuwabara P. E., Kimble J. Molecular genetics of sex determination in C. elegans. Trends Genet. 1992 May;8(5):164–168. doi: 10.1016/0168-9525(92)90218-s. [DOI] [PubMed] [Google Scholar]
  18. Kuwabara P. E., Okkema P. G., Kimble J. tra-2 encodes a membrane protein and may mediate cell communication in the Caenorhabditis elegans sex determination pathway. Mol Biol Cell. 1992 Apr;3(4):461–473. doi: 10.1091/mbc.3.4.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lifschytz E., Green M. M. Genetic identification of dominant overproducing mutations: the Beadex gene. Mol Gen Genet. 1979 Mar 20;171(2):153–159. doi: 10.1007/BF00270001. [DOI] [PubMed] [Google Scholar]
  20. Perry M. D., Li W., Trent C., Robertson B., Fire A., Hageman J. M., Wood W. B. Molecular characterization of the her-1 gene suggests a direct role in cell signaling during Caenorhabditis elegans sex determination. Genes Dev. 1993 Feb;7(2):216–228. doi: 10.1101/gad.7.2.216. [DOI] [PubMed] [Google Scholar]
  21. Plenefisch J. D., DeLong L., Meyer B. J. Genes that implement the hermaphrodite mode of dosage compensation in Caenorhabditis elegans. Genetics. 1989 Jan;121(1):57–76. doi: 10.1093/genetics/121.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pulak R., Anderson P. mRNA surveillance by the Caenorhabditis elegans smg genes. Genes Dev. 1993 Oct;7(10):1885–1897. doi: 10.1101/gad.7.10.1885. [DOI] [PubMed] [Google Scholar]
  23. Schleif R. DNA looping. Annu Rev Biochem. 1992;61:199–223. doi: 10.1146/annurev.bi.61.070192.001215. [DOI] [PubMed] [Google Scholar]
  24. Trent C., Wood W. B., Horvitz H. R. A novel dominant transformer allele of the sex-determining gene her-1 of Caenorhabditis elegans. Genetics. 1988 Sep;120(1):145–157. doi: 10.1093/genetics/120.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES