Skip to main content
Genetics logoLink to Genetics
. 1994 Oct;138(2):471–480. doi: 10.1093/genetics/138.2.471

Genetic Analysis of Systematic Mitochondrial Heteroplasmy in Rabbits

D Casane 1, N Dennebouy 1, H de-Rochambeau 1, J C Mounolou 1, M Monnerot 1
PMCID: PMC1206163  PMID: 7828828

Abstract

One unusual property of rabbit mitochondrial DNA (mtDNA) is the existence of repeated 153-bp motifs in the vicinity of the replication origin of its H strand. Furthermore, every individual is heteroplasmic: it carries mtDNA molecules with a variable number of repeats. A systematic study of 8 females and their progeny has been devised to analyze mtDNA transmission through generations. The results suggest that three mechanisms are acting simultaneously. (1) Genetic drift in the germ line is revealed by the evolution of heteroplasmy when two major molecular forms are present in a female. (2) A high mutation rate (around 10(-2) per animal generation) generating molecular diversity, by deletion and addition of repeated units, is required to explain the observation of heteroplasmy in every individual. Moreover, the rates of mutation from the most frequent type to the other types are unequal. The deletion of one unit is more frequent than a deletion of two units, which is in turn more frequent than a deletion of three. (3) Selection for shorter molecules in somatic cells is probable. The frequency distribution of mtDNA types depends on the organ analyzed (kidney-spleen and liver vs. gonads).

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adoutte A., Beisson J. Evolution of mixed populations of genetically different mitochondria in Paramecium aurelia. Nature. 1972 Feb 18;235(5338):393–396. doi: 10.1038/235393b0. [DOI] [PubMed] [Google Scholar]
  2. Birky C. W., Jr, Fuerst P., Maruyama T. Organelle gene diversity under migration, mutation, and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics. 1989 Mar;121(3):613–627. doi: 10.1093/genetics/121.3.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chretien F. C. Etude de l'origine, de la migration et de la multiplication des cellules germinales chez l'embryon de lapin. J Embryol Exp Morphol. 1966 Dec;16(3):591–607. [PubMed] [Google Scholar]
  4. Dujon B., Slonimski P. P., Weill L. Mitochondrial genetics IX: A model for recombination and segregation of mitochondrial genomes in saccharomyces cerevisiae. Genetics. 1974 Sep;78(1):415–437. doi: 10.1093/genetics/78.1.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hauswirth W. W., Laipis P. J. Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4686–4690. doi: 10.1073/pnas.79.15.4686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hauswirth W. W., Van de Walle M. J., Laipis P. J., Olivo P. D. Heterogeneous mitochondrial DNA D-loop sequences in bovine tissue. Cell. 1984 Jul;37(3):1001–1007. doi: 10.1016/0092-8674(84)90434-3. [DOI] [PubMed] [Google Scholar]
  7. Mignotte F., Gueride M., Champagne A. M., Mounolou J. C. Direct repeats in the non-coding region of rabbit mitochondrial DNA. Involvement in the generation of intra- and inter-individual heterogeneity. Eur J Biochem. 1990 Dec 12;194(2):561–571. doi: 10.1111/j.1432-1033.1990.tb15653.x. [DOI] [PubMed] [Google Scholar]
  8. Monnerot M., Mounolou J. C., Solignac M. Intra-individual length heterogeneity of Rana esculenta mitochondrial DNA. Biol Cell. 1984;52(3):213–218. doi: 10.1111/j.1768-322x.1985.tb00339.x. [DOI] [PubMed] [Google Scholar]
  9. Niki Y., Chigusa S. I., Matsuura E. T. Complete replacement of mitochondrial DNA in Drosophila. Nature. 1989 Oct 12;341(6242):551–552. doi: 10.1038/341551a0. [DOI] [PubMed] [Google Scholar]
  10. Olivo P. D., Van de Walle M. J., Laipis P. J., Hauswirth W. W. Nucleotide sequence evidence for rapid genotypic shifts in the bovine mitochondrial DNA D-loop. Nature. 1983 Nov 24;306(5941):400–402. doi: 10.1038/306400a0. [DOI] [PubMed] [Google Scholar]
  11. Rand D. M. Endotherms, ectotherms, and mitochondrial genome-size variation. J Mol Evol. 1993 Sep;37(3):281–295. doi: 10.1007/BF00175505. [DOI] [PubMed] [Google Scholar]
  12. Rand D. M., Harrison R. G. Mitochondrial DNA transmission genetics in crickets. Genetics. 1986 Nov;114(3):955–970. doi: 10.1093/genetics/114.3.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wilkinson G. S., Chapman A. M. Length and sequence variation in evening bat D-loop mtDNA. Genetics. 1991 Jul;128(3):607–617. doi: 10.1093/genetics/128.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. de Stordeur E., Solignac M., Monnerot M., Mounolou J. C. The generation of transplasmic Drosophila simulans by cytoplasmic injection: effects of segregation and selection on the perpetuation of mitochondrial DNA heteroplasmy. Mol Gen Genet. 1989 Dec;220(1):127–132. doi: 10.1007/BF00260866. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES