Skip to main content
Genetics logoLink to Genetics
. 1994 Nov;138(3):657–664. doi: 10.1093/genetics/138.3.657

The Neurospora Transposon Tad Is Sensitive to Repeat-Induced Point Mutation (Rip)

J A Kinsey 1, P W Garrett-Engele 1, E B Cambareri 1, E U Selker 1
PMCID: PMC1206216  PMID: 7851763

Abstract

RIP (repeat-induced point mutation) efficiently mutates repeated sequences in the sexual phase of the Neurospora crassa life cycle. Nevertheless, an active LINE-like retrotransposon, Tad, was found in a N. crassa strain from Adiopodoume. The possibility was tested that Tad might be resistant to RIP, or that the Adiopodoume strain might be incompetent for RIP. Tad elements derived from the Adiopodoume strain were found to be susceptible to RIP. In addition, strains lacking active Tad elements, including common laboratory strains and strains representing seven species of Neurospora, were found to have sequences closely related to Tad but with numerous mutations of the type resulting from RIP (G:C to A:T). Even the Adiopodoume strain showed Tad-like elements with mutations characteristic of RIP. Results of crossing of an Adiopodoume transformant with progeny of Adiopodoume suggest that the Adiopodoume strain is proficient at RIP. We conclude that Tad is an old transposable element that has been inactivated by RIP in most strains. Finding relics of RIP in both heterothallic and homothallic species of Neurospora implicates RIP across the genus.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cambareri E. B., Helber J., Kinsey J. A. Tad1-1, an active LINE-like element of Neurospora crassa. Mol Gen Genet. 1994 Mar;242(6):658–665. doi: 10.1007/BF00283420. [DOI] [PubMed] [Google Scholar]
  2. Cambareri E. B., Jensen B. C., Schabtach E., Selker E. U. Repeat-induced G-C to A-T mutations in Neurospora. Science. 1989 Jun 30;244(4912):1571–1575. doi: 10.1126/science.2544994. [DOI] [PubMed] [Google Scholar]
  3. Cambareri E. B., Singer M. J., Selker E. U. Recurrence of repeat-induced point mutation (RIP) in Neurospora crassa. Genetics. 1991 Apr;127(4):699–710. doi: 10.1093/genetics/127.4.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  5. Foss E. J., Garrett P. W., Kinsey J. A., Selker E. U. Specificity of repeat-induced point mutation (RIP) in Neurospora: sensitivity of non-Neurospora sequences, a natural diverged tandem duplication, and unique DNA adjacent to a duplicated region. Genetics. 1991 Apr;127(4):711–717. doi: 10.1093/genetics/127.4.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kinsey J. A. Restricted distribution of the Tad transposon in strains of Neurospora. Curr Genet. 1989 Apr;15(4):271–275. doi: 10.1007/BF00447042. [DOI] [PubMed] [Google Scholar]
  7. Kinsey J. A. Transnuclear retrotransposition of the Tad element of Neurospora. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9384–9387. doi: 10.1073/pnas.90.20.9384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Krumlauf R., Marzluf G. A. Genome organization and characterization of the repetitive and inverted repeat DNA sequences in Neurospora crassa. J Biol Chem. 1980 Feb 10;255(3):1138–1145. [PubMed] [Google Scholar]
  9. Leslie J. F. Inbreeding for isogeneity by backcrossing to a fixed parent in haploid and diploid eukaryotes. Genet Res. 1981 Jun;37(3):239–252. doi: 10.1017/s0016672300020243. [DOI] [PubMed] [Google Scholar]
  10. Mullis K. B., Faloona F. A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–350. doi: 10.1016/0076-6879(87)55023-6. [DOI] [PubMed] [Google Scholar]
  11. Nelson M., McClelland M. Site-specific methylation: effect on DNA modification methyltransferases and restriction endonucleases. Nucleic Acids Res. 1991 Apr 25;19 (Suppl):2045–2071. doi: 10.1093/nar/19.suppl.2045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
  13. Sanger F., Coulson A. R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975 May 25;94(3):441–448. doi: 10.1016/0022-2836(75)90213-2. [DOI] [PubMed] [Google Scholar]
  14. Selker E. U., Cambareri E. B., Jensen B. C., Haack K. R. Rearrangement of duplicated DNA in specialized cells of Neurospora. Cell. 1987 Dec 4;51(5):741–752. doi: 10.1016/0092-8674(87)90097-3. [DOI] [PubMed] [Google Scholar]
  15. Selker E. U., Garrett P. W. DNA sequence duplications trigger gene inactivation in Neurospora crassa. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6870–6874. doi: 10.1073/pnas.85.18.6870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Selker E. U. Premeiotic instability of repeated sequences in Neurospora crassa. Annu Rev Genet. 1990;24:579–613. doi: 10.1146/annurev.ge.24.120190.003051. [DOI] [PubMed] [Google Scholar]
  17. Vollmer S. J., Yanofsky C. Efficient cloning of genes of Neurospora crassa. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4869–4873. doi: 10.1073/pnas.83.13.4869. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES