Abstract
The molecular basis of the maternally inherited, heteroplasmic NCS2 mutant of maize was investigated. Analysis of the NCS2 mtDNA showed that it closely resembles the progenitor cmsT mitochondrial genome, except that the mutant genome contains a fused nad4-nad7 gene and is deleted for the small fourth exon of nad4. The rearrangement has occurred at a 16-bp repeat present in the third intron of the nad4 gene and in the second intron of the nad7 gene. Transcripts containing exon 4 of the nad4 gene are greatly reduced in mtRNA preparations from heteroplasmic NCS2 plants; larger transcripts are associated with the first three nad4 exons. Identical 5' ends of the nad4 transcripts have been mapped 396 and 247 bp upstream of the start codon in mtRNAs from both NCS2 and related non-NCS plants. The putative transcription termination signal of nad4 is deleted in mutant DNA, resulting in the production of the unique longer transcripts. The complex transcript pattern associated with nad7 is also altered in the mutant. Both nad4 and nad7 encode subunits of complex I (NADH dehydrogenase) of the mitochondrial electron transfer chain. Oxygen uptake experiments show that the functioning of complex I is specifically reduced in mitochondria isolated from NCS2 mutant plants.
Full Text
The Full Text of this article is available as a PDF (5.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bonen L., Williams K., Bird S., Wood C. The NADH dehydrogenase subunit 7 gene is interrupted by four group II introns in the wheat mitochondrial genome. Mol Gen Genet. 1994 Jul 8;244(1):81–89. doi: 10.1007/BF00280190. [DOI] [PubMed] [Google Scholar]
- Costanzo M. C., Fox T. D. Control of mitochondrial gene expression in Saccharomyces cerevisiae. Annu Rev Genet. 1990;24:91–113. doi: 10.1146/annurev.ge.24.120190.000515. [DOI] [PubMed] [Google Scholar]
- Fauron C. M., Havlik M., Brettell R. I. The mitochondrial genome organization of a maize fertile cmsT revertant line is generated through recombination between two sets of repeats. Genetics. 1990 Feb;124(2):423–428. doi: 10.1093/genetics/124.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gu J., Miles D., Newton K. J. Analysis of Leaf Sectors in the NCS6 Mitochondrial Mutant of Maize. Plant Cell. 1993 Aug;5(8):963–971. doi: 10.1105/tpc.5.8.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunt M. D., Newton K. J. The NCS3 mutation: genetic evidence for the expression of ribosomal protein genes in Zea mays mitochondria. EMBO J. 1991 May;10(5):1045–1052. doi: 10.1002/j.1460-2075.1991.tb08043.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaeger J. A., Turner D. H., Zuker M. Predicting optimal and suboptimal secondary structure for RNA. Methods Enzymol. 1990;183:281–306. doi: 10.1016/0076-6879(90)83019-6. [DOI] [PubMed] [Google Scholar]
- Lauer M., Knudsen C., Newton K. J., Gabay-Laughnan S., Laughnan J. R. A partially deleted mitochondrial cytochrome oxidase gene in the NCS6 abnormal growth mutant of maize. New Biol. 1990 Feb;2(2):179–186. [PubMed] [Google Scholar]
- Leterme S., Boutry M. Purification and preliminary characterization of mitochondrial complex I (NADH: ubiquinone reductase) from broad bean (Vicia faba L.). Plant Physiol. 1993 Jun;102(2):435–443. doi: 10.1104/pp.102.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marienfeld J. R., Gu J., Newton K. J. PCR-mediated detection of heteroplasmy in maize mitochondrial mutants. PCR Methods Appl. 1993 Dec;3(3):205–207. doi: 10.1101/gr.3.3.205. [DOI] [PubMed] [Google Scholar]
- Marienfeld J. R., Newton K. J. The nad4 gene of maize mitochondria is highly conserved. Plant Physiol. 1994 Jan;104(1):301–302. doi: 10.1104/pp.104.1.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marienfeld J. R., Reski R., Abel W. O. The first analysed archegoniate mitochondrial gene (COX3) exhibits extraordinary features. Curr Genet. 1991 Sep;20(4):319–329. doi: 10.1007/BF00318522. [DOI] [PubMed] [Google Scholar]
- Newton K. J., Coe E. H. Mitochondrial DNA changes in abnormal growth (nonchromosomal stripe) mutants of maize. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7363–7366. doi: 10.1073/pnas.83.19.7363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newton K. J., Knudsen C., Gabay-Laughnan S., Laughnan J. R. An abnormal growth mutant in maize has a defective mitochondrial cytochrome oxidase gene. Plant Cell. 1990 Feb;2(2):107–113. doi: 10.1105/tpc.2.2.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Randolph-Anderson B. L., Boynton J. E., Gillham N. W., Harris E. H., Johnson A. M., Dorthu M. P., Matagne R. F. Further characterization of the respiratory deficient dum-1 mutation of Chlamydomonas reinhardtii and its use as a recipient for mitochondrial transformation. Mol Gen Genet. 1993 Jan;236(2-3):235–244. doi: 10.1007/BF00277118. [DOI] [PubMed] [Google Scholar]
- Schuster W., Hiesel R., Isaac P. G., Leaver C. J., Brennicke A. Transcript termini of messenger RNAs in higher plant mitochondria. Nucleic Acids Res. 1986 Aug 11;14(15):5943–5954. doi: 10.1093/nar/14.15.5943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shumway L. K., Bauman L. F. Nonchromosomal stripe of maize. Genetics. 1967 Jan;55(1):33–38. doi: 10.1093/genetics/55.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stern D. B., Newton K. J. Isolation of plant mitochondrial RNA. Methods Enzymol. 1986;118:488–496. doi: 10.1016/0076-6879(86)18095-5. [DOI] [PubMed] [Google Scholar]
- Wallace D. C. Diseases of the mitochondrial DNA. Annu Rev Biochem. 1992;61:1175–1212. doi: 10.1146/annurev.bi.61.070192.005523. [DOI] [PubMed] [Google Scholar]
- Wallace D. C. Mitochondrial diseases: genotype versus phenotype. Trends Genet. 1993 Apr;9(4):128–133. doi: 10.1016/0168-9525(93)90207-x. [DOI] [PubMed] [Google Scholar]
- Wallace D. C., Singh G., Lott M. T., Hodge J. A., Schurr T. G., Lezza A. M., Elsas L. J., 2nd, Nikoskelainen E. K. Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science. 1988 Dec 9;242(4884):1427–1430. doi: 10.1126/science.3201231. [DOI] [PubMed] [Google Scholar]
- Weiss H., Friedrich T., Hofhaus G., Preis D. The respiratory-chain NADH dehydrogenase (complex I) of mitochondria. Eur J Biochem. 1991 May 8;197(3):563–576. doi: 10.1111/j.1432-1033.1991.tb15945.x. [DOI] [PubMed] [Google Scholar]
- Wissinger B., Hiesel R., Schuster W., Brennicke A. The NADH-dehydrogenase subunit 5 gene in Oenothera mitochondria contains two introns and is co-transcribed with the 5 S rRNA gene. Mol Gen Genet. 1988 Apr;212(1):56–65. doi: 10.1007/BF00322444. [DOI] [PubMed] [Google Scholar]
- Wissinger B., Schuster W., Brennicke A. Trans splicing in Oenothera mitochondria: nad1 mRNAs are edited in exon and trans-splicing group II intron sequences. Cell. 1991 May 3;65(3):473–482. doi: 10.1016/0092-8674(91)90465-b. [DOI] [PubMed] [Google Scholar]
- Zuker M. On finding all suboptimal foldings of an RNA molecule. Science. 1989 Apr 7;244(4900):48–52. doi: 10.1126/science.2468181. [DOI] [PubMed] [Google Scholar]
