Skip to main content
Genetics logoLink to Genetics
. 1994 Nov;138(3):871–881. doi: 10.1093/genetics/138.3.871

Controlling the Type I and Type II Errors in Mapping Quantitative Trait Loci

R C Jansen 1
PMCID: PMC1206235  PMID: 7851782

Abstract

Although the interval mapping method is widely used for mapping quantitative trait loci (QTLs), it is not very well suited for mapping multiple QTLs. Here, we present the results of a computer simulation to study the application of exact and approximate models for multiple QTLs. In particular, we focus on an automatic two-stage procedure in which in the first stage ``important'' markers are selected in multiple regression on markers. In the second stage a QTL is moved along the chromosomes by using the pre-selected markers as cofactors, except for the markers flanking the interval under study. A refined procedure for cases with large numbers of marker cofactors is described. Our approach will be called MQM mapping, where MQM is an acronym for ``multiple-QTL models'' as well as for ``marker-QTL-marker.'' Our simulation work demonstrates the great advantage of MQM mapping compared to interval mapping in reducing the chance of a type I error (i.e., a QTL is indicated at a location where actually no QTL is present) and in reducing the chance of a type II error (i.e., a QTL is not detected).

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Haley C. S., Knott S. A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity (Edinb) 1992 Oct;69(4):315–324. doi: 10.1038/hdy.1992.131. [DOI] [PubMed] [Google Scholar]
  2. Jansen R. C. Interval mapping of multiple quantitative trait loci. Genetics. 1993 Sep;135(1):205–211. doi: 10.1093/genetics/135.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES