Skip to main content
Genetics logoLink to Genetics
. 1994 Dec;138(4):1181–1197. doi: 10.1093/genetics/138.4.1181

Genetic Analysis of Stellate Elements of Drosophila Melanogaster

G Palumbo 1, S Bonaccorsi 1, L G Robbins 1, S Pimpinelli 1
PMCID: PMC1206257  PMID: 7896100

Abstract

Repeated elements are remarkably important for male meiosis and spermiogenesis in Drosophila melanogaster. Pairing of the X and Y chromosomes is mediated by the ribosomal RNA genes of the Y chromosome and X chromosome heterochromatin, spermiogenesis depends on the fertility factors of the Y chromosome. Intriguingly, a peculiar genetic system of interaction between the Y-linked crystal locus and the X-linked Stellate elements seem to be also involved in male meiosis and spermiogenesis. Deletion of the crystal element of the Y, via an interaction with the Stellate elements of the X, causes meiotic abnormalities, gamete-genotype dependent failure of sperm development (meiotic drive), and deposition of protein crystals in spermatocytes. The current hypothesis is that the meiotic abnormalities observed in cry(-) males is due to an induced overexpression of the normally repressed Ste elements. An implication of this hypothesis is that the strength of the abnormalities would depend on the amount of the Ste copies. To test this point we have genetically and cytologically examined the relationship of Ste copy number and organization to meiotic behavior in cry(-) males. We found that heterochromatic as well as euchromatic Ste repeats are functional and that the abnormality in chromosome condensation and the frequency of nondisjunction are related to Ste copy number. Moreover, we found that meiosis is disrupted after synapsis and that cry-induced meiotic drive is probably not mediated by Ste.

Full Text

The Full Text of this article is available as a PDF (13.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balakireva M. D., Shevelyov YuYa, Nurminsky D. I., Livak K. J., Gvozdev V. A. Structural organization and diversification of Y-linked sequences comprising Su(Ste) genes in Drosophila melanogaster. Nucleic Acids Res. 1992 Jul 25;20(14):3731–3736. doi: 10.1093/nar/20.14.3731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cooley L., Berg C., Spradling A. Controlling P element insertional mutagenesis. Trends Genet. 1988 Sep;4(9):254–258. doi: 10.1016/0168-9525(88)90032-7. [DOI] [PubMed] [Google Scholar]
  3. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  4. Hardy R. W., Lindsley D. L., Livak K. J., Lewis B., Siversten A. L., Joslyn G. L., Edwards J., Bonaccorsi S. Cytogenetic analysis of a segment of the Y chromosome of Drosophila melanogaster. Genetics. 1984 Aug;107(4):591–610. doi: 10.1093/genetics/107.4.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Livak K. J. Detailed structure of the Drosophila melanogaster stellate genes and their transcripts. Genetics. 1990 Feb;124(2):303–316. doi: 10.1093/genetics/124.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Livak K. J. Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics. 1984 Aug;107(4):611–634. doi: 10.1093/genetics/107.4.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. MEYER G. F., HESS O., BEERMANN W. [Phase specific function structure in spermatocyte nuclei of Drosophila melanogaster and their dependence of Y chromosomes]. Chromosoma. 1961;12:676–716. doi: 10.1007/BF00328946. [DOI] [PubMed] [Google Scholar]
  8. McKee B. Sex Chromosome Meiotic Drive in DROSOPHILA MELANOGASTER Males. Genetics. 1984 Mar;106(3):403–422. doi: 10.1093/genetics/106.3.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Novitski E., Grace D., Strommen C. The entire compound autosomes of Drosophila melanogaster. Genetics. 1981 Jun;98(2):257–273. doi: 10.1093/genetics/98.2.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. O'Connell P. O., Rosbash M. Sequence, structure, and codon preference of the Drosophila ribosomal protein 49 gene. Nucleic Acids Res. 1984 Jul 11;12(13):5495–5513. doi: 10.1093/nar/12.13.5495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pisano C., Bonaccorsi S., Gatti M. The kl-3 loop of the Y chromosome of Drosophila melanogaster binds a tektin-like protein. Genetics. 1993 Mar;133(3):569–579. doi: 10.1093/genetics/133.3.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Robertson H. M., Engels W. R. Modified P elements that mimic the P cytotype in Drosophila melanogaster. Genetics. 1989 Dec;123(4):815–824. doi: 10.1093/genetics/123.4.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Shevelyov Y. Y. Copies of a Stellate gene variant are located in the X heterochromatin of Drosophila melanogaster and are probably expressed. Genetics. 1992 Dec;132(4):1033–1037. doi: 10.1093/genetics/132.4.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Spradling A. C., Rubin G. M. The effect of chromosomal position on the expression of the Drosophila xanthine dehydrogenase gene. Cell. 1983 Aug;34(1):47–57. doi: 10.1016/0092-8674(83)90135-6. [DOI] [PubMed] [Google Scholar]
  15. Tsubota S., Schedl P. Hybrid dysgenesis-induced revertants of insertions at the 5' end of the rudimentary gene in Drosophila melanogaster: transposon-induced control mutations. Genetics. 1986 Sep;114(1):165–182. doi: 10.1093/genetics/114.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Waring G. L., DiOrio J. P., Hennen S. Isolation of germ line-dependent female-sterile mutation that affects yolk specific sequestration and chorion formation in Drosophila. Dev Biol. 1983 Dec;100(2):452–463. doi: 10.1016/0012-1606(83)90238-5. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES