Skip to main content
Genetics logoLink to Genetics
. 1994 Dec;138(4):1275–1285. doi: 10.1093/genetics/138.4.1275

Mutator Insertions in an Intron of the Maize Knotted1 Gene Result in Dominant Suppressible Mutations

B Greene 1, R Walko 1, S Hake 1
PMCID: PMC1206262  PMID: 7896105

Abstract

The knotted1 (kn1) locus of maize is defined by a series of dominant mutations affecting leaf development. We recovered 10 additional mutant alleles in lines containing active Mutator transposable elements. Nine of these alleles contain Mu1 or Mu8 elements inserted within a 310-bp region of the kn1 third intron. All five Mu8 insertions are in the same orientation whereas both orientations of Mu1 were recovered. Northern analysis showed that ectopic expression of kn1 within developing leaves is correlated with the mutant phenotype for the four alleles analyzed. Transcript size was not altered. The effect of Mu activity, as measured by the extent of Mu element methylation or by the presence of the autonomous MuDR element, was investigated for two alleles. Kn1-mum2, containing a Mu8 element, and Kn1-mum7, containing a Mu1 element, required Mu activity for the knotted phenotype. We examined the effect of Mu activity on ectopic kn1 expression in Kn1-mum2 and found that the transcript was present in leaves of Mu active individuals only. We discuss possible mechanisms by which Mu activity could condition kn1 gene expression.

Full Text

The Full Text of this article is available as a PDF (5.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barkan A., Martienssen R. A. Inactivation of maize transposon Mu suppresses a mutant phenotype by activating an outward-reading promoter near the end of Mu1. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3502–3506. doi: 10.1073/pnas.88.8.3502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barker R. F., Thompson D. V., Talbot D. R., Swanson J., Bennetzen J. L. Nucleotide sequence of the maize transposable element Mul. Nucleic Acids Res. 1984 Aug 10;12(15):5955–5967. doi: 10.1093/nar/12.15.5955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Birchler J. A., Hiebert J. C. Interaction of the Enhancer of white-apricot with transposable element alleles at the white locus in Drosophila melanogaster. Genetics. 1989 May;122(1):129–138. doi: 10.1093/genetics/122.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradley D., Carpenter R., Sommer H., Hartley N., Coen E. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell. 1993 Jan 15;72(1):85–95. doi: 10.1016/0092-8674(93)90052-r. [DOI] [PubMed] [Google Scholar]
  5. Brown J., Sundaresan V. Genetic study of the loss and restoration of Mutator transposon activity in maize: evidence against dominant-negative regulator associated with loss of activity. Genetics. 1992 Apr;130(4):889–898. doi: 10.1093/genetics/130.4.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown W. E., Robertson D. S., Bennetzen J. L. Molecular analysis of multiple mutator-derived alleles of the bronze locus of maize. Genetics. 1989 Jun;122(2):439–445. doi: 10.1093/genetics/122.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Campuzano S., Balcells L., Villares R., Carramolino L., García-Alonso L., Modolell J. Excess function hairy-wing mutations caused by gypsy and copia insertions within structural genes of the achaete-scute locus of Drosophila. Cell. 1986 Jan 31;44(2):303–312. doi: 10.1016/0092-8674(86)90764-6. [DOI] [PubMed] [Google Scholar]
  8. Chandler V. L., Hardeman K. J. The Mu elements of Zea mays. Adv Genet. 1992;30:77–122. doi: 10.1016/s0065-2660(08)60319-3. [DOI] [PubMed] [Google Scholar]
  9. Chandler V. L., Walbot V. DNA modification of a maize transposable element correlates with loss of activity. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1767–1771. doi: 10.1073/pnas.83.6.1767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chandler V., Rivin C., Walbot V. Stable non-mutator stocks of maize have sequences homologous to the Mu1 transposable element. Genetics. 1986 Nov;114(3):1007–1021. doi: 10.1093/genetics/114.3.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chen C. H., Oishi K. K., Kloeckener-Gruissem B., Freeling M. Organ-specific expression of maize Adh1 is altered after a Mu transposon insertion. Genetics. 1987 Jul;116(3):469–477. doi: 10.1093/genetics/116.3.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chi H. C., Hsieh J. C., Hui C. F., Tam M. F. Modified method for double stranded DNA sequencing and synthetic oligonucleotide purification. Nucleic Acids Res. 1988 Nov 11;16(21):10382–10382. doi: 10.1093/nar/16.21.10382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Coen E. S., Carpenter R., Martin C. Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus. Cell. 1986 Oct 24;47(2):285–296. doi: 10.1016/0092-8674(86)90451-4. [DOI] [PubMed] [Google Scholar]
  14. Corces V. G., Geyer P. K. Interactions of retrotransposons with the host genome: the case of the gypsy element of Drosophila. Trends Genet. 1991 Mar;7(3):86–90. doi: 10.1016/0168-9525(91)90277-W. [DOI] [PubMed] [Google Scholar]
  15. Dorsett D. Distance-independent inactivation of an enhancer by the suppressor of Hairy-wing DNA-binding protein of Drosophila. Genetics. 1993 Aug;134(4):1135–1144. doi: 10.1093/genetics/134.4.1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dorsett D., Viglianti G. A., Rutledge B. J., Meselson M. Alteration of hsp82 gene expression by the gypsy transposon and suppressor genes in Drosophila melanogaster. Genes Dev. 1989 Apr;3(4):454–468. doi: 10.1101/gad.3.4.454. [DOI] [PubMed] [Google Scholar]
  17. Doseff A., Martienssen R., Sundaresan V. Somatic excision of the Mu1 transposable element of maize. Nucleic Acids Res. 1991 Feb 11;19(3):579–584. doi: 10.1093/nar/19.3.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fleenor D., Spell M., Robertson D., Wessler S. Nucleotide sequence of the maize Mutator element, Mu8. Nucleic Acids Res. 1990 Nov 25;18(22):6725–6725. doi: 10.1093/nar/18.22.6725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Freeling M., Hake S. Developmental genetics of mutants that specify knotted leaves in maize. Genetics. 1985 Nov;111(3):617–634. doi: 10.1093/genetics/111.3.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Freeling M., Schwartz D. Genetic relationships between the multiple alcohol dehydrogenases of maize. Biochem Genet. 1973 Jan;8(1):27–36. doi: 10.1007/BF00485554. [DOI] [PubMed] [Google Scholar]
  21. Hake S. Unraveling the knots in plant development. Trends Genet. 1992 Mar;8(3):109–114. doi: 10.1016/0168-9525(92)90199-e. [DOI] [PubMed] [Google Scholar]
  22. Hake S., Vollbrecht E., Freeling M. Cloning Knotted, the dominant morphological mutant in maize using Ds2 as a transposon tag. EMBO J. 1989 Jan;8(1):15–22. doi: 10.1002/j.1460-2075.1989.tb03343.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hardeman K. J., Chandler V. L. Two maize genes are each targeted predominantly by distinct classes of Mu elements. Genetics. 1993 Dec;135(4):1141–1150. doi: 10.1093/genetics/135.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hershberger R. J., Warren C. A., Walbot V. Mutator activity in maize correlates with the presence and expression of the Mu transposable element Mu9. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10198–10202. doi: 10.1073/pnas.88.22.10198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hinton C. W. Morphogenetically Specific Mutability in DROSOPHILA ANANASSAE. Genetics. 1984 Apr;106(4):631–653. doi: 10.1093/genetics/106.4.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hoover K. K., Chien A. J., Corces V. G. Effects of transposable elements on the expression of the forked gene of Drosophila melanogaster. Genetics. 1993 Oct;135(2):507–526. doi: 10.1093/genetics/135.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hoover K. K., Gerasimova T. I., Chien A. J., Corces V. G. Dominant effects of suppressor of Hairy-wing mutations on gypsy-induced alleles of forked and cut in Drosophila melanogaster. Genetics. 1992 Nov;132(3):691–697. doi: 10.1093/genetics/132.3.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lowe B., Mathern J., Hake S. Active Mutator elements suppress the knotted phenotype and increase recombination at the Kn1-O tandem duplication. Genetics. 1992 Nov;132(3):813–822. doi: 10.1093/genetics/132.3.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Martienssen R., Baron A. Coordinate suppression of mutations caused by Robertson's mutator transposons in maize. Genetics. 1994 Mar;136(3):1157–1170. doi: 10.1093/genetics/136.3.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Misra S., Rio D. C. Cytotype control of Drosophila P element transposition: the 66 kd protein is a repressor of transposase activity. Cell. 1990 Jul 27;62(2):269–284. doi: 10.1016/0092-8674(90)90365-l. [DOI] [PubMed] [Google Scholar]
  31. Mount S. M., Green M. M., Rubin G. M. Partial revertants of the transposable element-associated suppressible allele white-apricot in Drosophila melanogaster: structures and responsiveness to genetic modifiers. Genetics. 1988 Feb;118(2):221–234. doi: 10.1093/genetics/118.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ortiz D. F., Strommer J. N. The Mu1 maize transposable element induces tissue-specific aberrant splicing and polyadenylation in two Adh1 mutants. Mol Cell Biol. 1990 May;10(5):2090–2095. doi: 10.1128/mcb.10.5.2090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Peifer M., Bender W. The anterobithorax and bithorax mutations of the bithorax complex. EMBO J. 1986 Sep;5(9):2293–2303. doi: 10.1002/j.1460-2075.1986.tb04497.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Smith L. G., Greene B., Veit B., Hake S. A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development. 1992 Sep;116(1):21–30. doi: 10.1242/dev.116.1.21. [DOI] [PubMed] [Google Scholar]
  35. Sommer H., Bonas U., Saedler H. Transposon-induced alterations in the promoter region affect transcription of the chalcone synthase gene of Antirrhinum majus. Mol Gen Genet. 1988 Jan;211(1):49–55. doi: 10.1007/BF00338392. [DOI] [PubMed] [Google Scholar]
  36. Tanda S., Corces V. G. Retrotransposon-induced overexpression of a homeobox gene causes defects in eye morphogenesis in Drosophila. EMBO J. 1991 Feb;10(2):407–417. doi: 10.1002/j.1460-2075.1991.tb07962.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Veit B., Vollbrecht E., Mathern J., Hake S. A tandem duplication causes the Kn1-O allele of Knotted, a dominant morphological mutant of maize. Genetics. 1990 Jul;125(3):623–631. doi: 10.1093/genetics/125.3.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Vollbrecht E., Veit B., Sinha N., Hake S. The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature. 1991 Mar 21;350(6315):241–243. doi: 10.1038/350241a0. [DOI] [PubMed] [Google Scholar]
  39. Walbot V. Inheritance of mutator activity in Zea mays as assayed by somatic instability of the bz2-mu1 allele. Genetics. 1986 Dec;114(4):1293–1312. doi: 10.1093/genetics/114.4.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES