Abstract
Selective genotyping is a method to reduce costs in marker-quantitative trait locus (QTL) linkage determination by genotyping only those individuals with extreme, and hence most informative, quantitative trait values. The DNA pooling strategy (termed: ``selective DNA pooling'') takes this one step further by pooling DNA from the selected individuals at each of the two phenotypic extremes, and basing the test for linkage on marker allele frequencies as estimated from the pooled samples only. This can reduce genotyping costs of marker-QTL linkage determination by up to two orders of magnitude. Theoretical analysis of selective DNA pooling shows that for experiments involving backcross, F(2) and half-sib designs, the power of selective DNA pooling for detecting genes with large effect, can be the same as that obtained by individual selective genotyping. Power for detecting genes with small effect, however, was found to decrease strongly with increase in the technical error of estimating allele frequencies in the pooled samples. The effect of technical error, however, can be markedly reduced by replication of technical procedures. It is also shown that a proportion selected of 0.1 at each tail will be appropriate for a wide range of experimental conditions.
Full Text
The Full Text of this article is available as a PDF (959.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Darvasi A., Weinreb A., Minke V., Weller J. I., Soller M. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics. 1993 Jul;134(3):943–951. doi: 10.1093/genetics/134.3.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hilbert P., Lindpaintner K., Beckmann J. S., Serikawa T., Soubrier F., Dubay C., Cartwright P., De Gouyon B., Julier C., Takahasi S. Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature. 1991 Oct 10;353(6344):521–529. doi: 10.1038/353521a0. [DOI] [PubMed] [Google Scholar]
- Johnston R. F., Pickett S. C., Barker D. L. Autoradiography using storage phosphor technology. Electrophoresis. 1990 May;11(5):355–360. doi: 10.1002/elps.1150110503. [DOI] [PubMed] [Google Scholar]
- Khatib H., Darvasi A., Plotski Y., Soller M. Determining relative microsatellite allele frequencies in pooled DNA samples. PCR Methods Appl. 1994 Aug;4(1):13–18. doi: 10.1101/gr.4.1.13. [DOI] [PubMed] [Google Scholar]
- Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipkin E., Shalom A., Khatib H., Soller M., Friedmann A. Milk as a source of deoxyribonucleic acid and as a substrate for the polymerase chain reaction. J Dairy Sci. 1993 Jul;76(7):2025–2032. doi: 10.3168/jds.S0022-0302(93)77536-0. [DOI] [PubMed] [Google Scholar]
- Paterson A. H., Lander E. S., Hewitt J. D., Peterson S., Lincoln S. E., Tanksley S. D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature. 1988 Oct 20;335(6192):721–726. doi: 10.1038/335721a0. [DOI] [PubMed] [Google Scholar]
- Weller J. I., Kashi Y., Soller M. Power of daughter and granddaughter designs for determining linkage between marker loci and quantitative trait loci in dairy cattle. J Dairy Sci. 1990 Sep;73(9):2525–2537. doi: 10.3168/jds.S0022-0302(90)78938-2. [DOI] [PubMed] [Google Scholar]