Skip to main content
Genetics logoLink to Genetics
. 1995 Jan;139(1):203–213. doi: 10.1093/genetics/139.1.203

Phenotypic and Molecular Characterization of Ser(d), a Dominant Allele of the Drosophila Gene Serrate

U Thomas 1, F Jonsson 1, S A Speicher 1, E Knust 1
PMCID: PMC1206319  PMID: 7705624

Abstract

The Drosophila gene Serrate (Ser) encodes a transmembrane protein with 14 epidermal growth factor--like repeats in its extracellular domain, which is required for the control of cell proliferation and pattern formation during wing development. Flies hetero- or homozygous for the dominant mutation Ser(D) exhibit scalloping of the wing margin due to cell death during pupal stages. Ser(D) is associated with an insertion of the transposable element Tirant in the 3' untranslated region of the gene, resulting in the truncation of the Ser RNA, thereby eliminating putative RNA degradation signals located further downstream. This leads to increased stability of Ser RNA and higher levels of Serrate protein. In wing discs of wild-type third instar larvae, the Serrate protein exhibits a complex expression pattern, including a strong stripe dorsal and a weaker stripe ventral to the prospective wing margin. Wing discs of Ser(D) third instar larvae exhibit additional Serrate protein expression in the edge zone of the future wing margin, where it is normally not detectable. In these cells expression of wing margin specific genes, such as cut and wingless, is repressed. By using the yeast Gal4 system to induce locally restricted ectopic expression of Serrate in the edge zone of the prospective wing margin, we can reproduce all aspects of the Ser(D) wing phenotype, that is, repression of wing margin--specific genes, scalloping of the wing margin and enhancement of the Notch haplo-insufficiency wing phenotype. This suggests that expression of the Serrate protein in the cells of the edge zone of the wing margin, where it is normally absent, interferes with the proper development of the margin.

Full Text

The Full Text of this article is available as a PDF (6.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blochlinger K., Jan L. Y., Jan Y. N. Postembryonic patterns of expression of cut, a locus regulating sensory organ identity in Drosophila. Development. 1993 Feb;117(2):441–450. doi: 10.1242/dev.117.2.441. [DOI] [PubMed] [Google Scholar]
  2. Brand A. H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993 Jun;118(2):401–415. doi: 10.1242/dev.118.2.401. [DOI] [PubMed] [Google Scholar]
  3. Brookman J. J., Toosy A. T., Shashidhara L. S., White R. A. The 412 retrotransposon and the development of gonadal mesoderm in Drosophila. Development. 1992 Dec;116(4):1185–1192. doi: 10.1242/dev.116.4.1185. [DOI] [PubMed] [Google Scholar]
  4. Cohen B., McGuffin M. E., Pfeifle C., Segal D., Cohen S. M. apterous, a gene required for imaginal disc development in Drosophila encodes a member of the LIM family of developmental regulatory proteins. Genes Dev. 1992 May;6(5):715–729. doi: 10.1101/gad.6.5.715. [DOI] [PubMed] [Google Scholar]
  5. Couso J. P., Bishop S. A., Martinez Arias A. The wingless signalling pathway and the patterning of the wing margin in Drosophila. Development. 1994 Mar;120(3):621–636. doi: 10.1242/dev.120.3.621. [DOI] [PubMed] [Google Scholar]
  6. Cubas P., de Celis J. F., Campuzano S., Modolell J. Proneural clusters of achaete-scute expression and the generation of sensory organs in the Drosophila imaginal wing disc. Genes Dev. 1991 Jun;5(6):996–1008. doi: 10.1101/gad.5.6.996. [DOI] [PubMed] [Google Scholar]
  7. Diaz-Benjumea F. J., Cohen S. M. Interaction between dorsal and ventral cells in the imaginal disc directs wing development in Drosophila. Cell. 1993 Nov 19;75(4):741–752. doi: 10.1016/0092-8674(93)90494-b. [DOI] [PubMed] [Google Scholar]
  8. Fleming R. J., Scottgale T. N., Diederich R. J., Artavanis-Tsakonas S. The gene Serrate encodes a putative EGF-like transmembrane protein essential for proper ectodermal development in Drosophila melanogaster. Genes Dev. 1990 Dec;4(12A):2188–2201. doi: 10.1101/gad.4.12a.2188. [DOI] [PubMed] [Google Scholar]
  9. Fristrom D. Cellular degeneration in the production of some mutant phenotypes in Drosophila melanogaster. Mol Gen Genet. 1969;103(4):363–379. doi: 10.1007/BF00383486. [DOI] [PubMed] [Google Scholar]
  10. Garcia-Bellido A., Ripoll P., Morata G. Developmental compartmentalization in the dorsal mesothoracic disc of Drosophila. Dev Biol. 1976 Jan;48(1):132–147. doi: 10.1016/0012-1606(76)90052-x. [DOI] [PubMed] [Google Scholar]
  11. Garcia-Bellido A., de Celis J. F. Developmental genetics of the venation pattern of Drosophila. Annu Rev Genet. 1992;26:277–304. doi: 10.1146/annurev.ge.26.120192.001425. [DOI] [PubMed] [Google Scholar]
  12. Garrell J., Modolell J. The Drosophila extramacrochaetae locus, an antagonist of proneural genes that, like these genes, encodes a helix-loop-helix protein. Cell. 1990 Apr 6;61(1):39–48. doi: 10.1016/0092-8674(90)90213-x. [DOI] [PubMed] [Google Scholar]
  13. Hartenstein V., Posakony J. W. Development of adult sensilla on the wing and notum of Drosophila melanogaster. Development. 1989 Oct;107(2):389–405. doi: 10.1242/dev.107.2.389. [DOI] [PubMed] [Google Scholar]
  14. Jack J., DeLotto Y. Effect of wing scalloping mutations on cut expression and sense organ differentiation in the Drosophila wing margin. Genetics. 1992 Jun;131(2):353–363. doi: 10.1093/genetics/131.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jack J., Dorsett D., Delotto Y., Liu S. Expression of the cut locus in the Drosophila wing margin is required for cell type specification and is regulated by a distant enhancer. Development. 1991 Nov;113(3):735–747. doi: 10.1242/dev.113.3.735. [DOI] [PubMed] [Google Scholar]
  16. James A. A., Bryant P. J. Mutations causing pattern deficiencies and duplications in the imaginal wing disk of Drosophila melanogaster. Dev Biol. 1981 Jul 15;85(1):39–54. doi: 10.1016/0012-1606(81)90234-7. [DOI] [PubMed] [Google Scholar]
  17. Johnson T. K., Judd B. H. Analysis of the Cut Locus of DROSOPHILA MELANOGASTER. Genetics. 1979 Jun;92(2):485–502. doi: 10.1093/genetics/92.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jones T. R., Cole M. D. Rapid cytoplasmic turnover of c-myc mRNA: requirement of the 3' untranslated sequences. Mol Cell Biol. 1987 Dec;7(12):4513–4521. doi: 10.1128/mcb.7.12.4513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kooh P. J., Fehon R. G., Muskavitch M. A. Implications of dynamic patterns of Delta and Notch expression for cellular interactions during Drosophila development. Development. 1993 Feb;117(2):493–507. doi: 10.1242/dev.117.2.493. [DOI] [PubMed] [Google Scholar]
  20. Kopczynski C. C., Muskavitch M. A. Complex spatio-temporal accumulation of alternative transcripts from the neurogenic gene Delta during Drosophila embryogenesis. Development. 1989 Nov;107(3):623–636. doi: 10.1242/dev.107.3.623. [DOI] [PubMed] [Google Scholar]
  21. Lipman D. J., Pearson W. R. Rapid and sensitive protein similarity searches. Science. 1985 Mar 22;227(4693):1435–1441. doi: 10.1126/science.2983426. [DOI] [PubMed] [Google Scholar]
  22. Masucci J. D., Miltenberger R. J., Hoffmann F. M. Pattern-specific expression of the Drosophila decapentaplegic gene in imaginal disks is regulated by 3' cis-regulatory elements. Genes Dev. 1990 Nov;4(11):2011–2023. doi: 10.1101/gad.4.11.2011. [DOI] [PubMed] [Google Scholar]
  23. Phillips R. G., Roberts I. J., Ingham P. W., Whittle J. R. The Drosophila segment polarity gene patched is involved in a position-signalling mechanism in imaginal discs. Development. 1990 Sep;110(1):105–114. doi: 10.1242/dev.110.1.105. [DOI] [PubMed] [Google Scholar]
  24. Phillips R. G., Whittle J. R. wingless expression mediates determination of peripheral nervous system elements in late stages of Drosophila wing disc development. Development. 1993 Jun;118(2):427–438. doi: 10.1242/dev.118.2.427. [DOI] [PubMed] [Google Scholar]
  25. Rebay I., Fleming R. J., Fehon R. G., Cherbas L., Cherbas P., Artavanis-Tsakonas S. Specific EGF repeats of Notch mediate interactions with Delta and Serrate: implications for Notch as a multifunctional receptor. Cell. 1991 Nov 15;67(4):687–699. doi: 10.1016/0092-8674(91)90064-6. [DOI] [PubMed] [Google Scholar]
  26. Rio D. C., Laski F. A., Rubin G. M. Identification and immunochemical analysis of biologically active Drosophila P element transposase. Cell. 1986 Jan 17;44(1):21–32. doi: 10.1016/0092-8674(86)90481-2. [DOI] [PubMed] [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Savant-Bhonsale S., Cleveland D. W. Evidence for instability of mRNAs containing AUUUA motifs mediated through translation-dependent assembly of a > 20S degradation complex. Genes Dev. 1992 Oct;6(10):1927–1939. doi: 10.1101/gad.6.10.1927. [DOI] [PubMed] [Google Scholar]
  29. Schubiger M., Palka J. Changing spatial patterns of DNA replication in the developing wing of Drosophila. Dev Biol. 1987 Sep;123(1):145–153. doi: 10.1016/0012-1606(87)90436-2. [DOI] [PubMed] [Google Scholar]
  30. Shaw G., Kamen R. A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell. 1986 Aug 29;46(5):659–667. doi: 10.1016/0092-8674(86)90341-7. [DOI] [PubMed] [Google Scholar]
  31. Shellenbarger D. L., Mohler J. D. Temperature-sensitive periods and autonomy of pleiotropic effects of l(1)Nts1, a conditional notch lethal in Drosophila. Dev Biol. 1978 Feb;62(2):432–446. doi: 10.1016/0012-1606(78)90226-9. [DOI] [PubMed] [Google Scholar]
  32. Shyu A. B., Greenberg M. E., Belasco J. G. The c-fos transcript is targeted for rapid decay by two distinct mRNA degradation pathways. Genes Dev. 1989 Jan;3(1):60–72. doi: 10.1101/gad.3.1.60. [DOI] [PubMed] [Google Scholar]
  33. Simpson P., Lawrence P. A., Maschat F. Clonal analysis of two wing-scalloping mutants of Drosophila. Dev Biol. 1981 May;84(1):206–211. doi: 10.1016/0012-1606(81)90384-5. [DOI] [PubMed] [Google Scholar]
  34. Smith P. A., Corces V. G. Drosophila transposable elements: mechanisms of mutagenesis and interactions with the host genome. Adv Genet. 1991;29:229–300. doi: 10.1016/s0065-2660(08)60109-1. [DOI] [PubMed] [Google Scholar]
  35. Speicher S. A., Thomas U., Hinz U., Knust E. The Serrate locus of Drosophila and its role in morphogenesis of the wing imaginal discs: control of cell proliferation. Development. 1994 Mar;120(3):535–544. doi: 10.1242/dev.120.3.535. [DOI] [PubMed] [Google Scholar]
  36. Spindler K. R., Rosser D. S., Berk A. J. Analysis of adenovirus transforming proteins from early regions 1A and 1B with antisera to inducible fusion antigens produced in Escherichia coli. J Virol. 1984 Jan;49(1):132–141. doi: 10.1128/jvi.49.1.132-141.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tautz D., Pfeifle C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma. 1989 Aug;98(2):81–85. doi: 10.1007/BF00291041. [DOI] [PubMed] [Google Scholar]
  38. Thomas U., Speicher S. A., Knust E. The Drosophila gene Serrate encodes an EGF-like transmembrane protein with a complex expression pattern in embryos and wing discs. Development. 1991 Mar;111(3):749–761. doi: 10.1242/dev.111.3.749. [DOI] [PubMed] [Google Scholar]
  39. Vässin H., Vielmetter J., Campos-Ortega J. A. Genetic interactions in early neurogenesis of Drosophila melanogaster. J Neurogenet. 1985 Nov;2(5):291–308. doi: 10.3109/01677068509102325. [DOI] [PubMed] [Google Scholar]
  40. Wagner-Bernholz J. T., Wilson C., Gibson G., Schuh R., Gehring W. J. Identification of target genes of the homeotic gene Antennapedia by enhancer detection. Genes Dev. 1991 Dec;5(12B):2467–2480. doi: 10.1101/gad.5.12b.2467. [DOI] [PubMed] [Google Scholar]
  41. Whittle J. R. Pattern formation in imaginal discs. Semin Cell Biol. 1990 Jun;1(3):241–252. [PubMed] [Google Scholar]
  42. Wilkins A. S., Gubb D. Pattern formation in the embryo and imaginal discs of Drosophila: what are the links? Dev Biol. 1991 May;145(1):1–12. doi: 10.1016/0012-1606(91)90208-k. [DOI] [PubMed] [Google Scholar]
  43. Williams J. A., Paddock S. W., Carroll S. B. Pattern formation in a secondary field: a hierarchy of regulatory genes subdivides the developing Drosophila wing disc into discrete subregions. Development. 1993 Feb;117(2):571–584. doi: 10.1242/dev.117.2.571. [DOI] [PubMed] [Google Scholar]
  44. Williams J. A., Paddock S. W., Vorwerk K., Carroll S. B. Organization of wing formation and induction of a wing-patterning gene at the dorsal/ventral compartment boundary. Nature. 1994 Mar 24;368(6469):299–305. doi: 10.1038/368299a0. [DOI] [PubMed] [Google Scholar]
  45. Xu T., Rebay I., Fleming R. J., Scottgale T. N., Artavanis-Tsakonas S. The Notch locus and the genetic circuitry involved in early Drosophila neurogenesis. Genes Dev. 1990 Mar;4(3):464–475. doi: 10.1101/gad.4.3.464. [DOI] [PubMed] [Google Scholar]
  46. de Celis J. F., Barrio R., del Arco A., García-Bellido A. Genetic and molecular characterization of a Notch mutation in its Delta- and Serrate-binding domain in Drosophila. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4037–4041. doi: 10.1073/pnas.90.9.4037. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES