Skip to main content
Genetics logoLink to Genetics
. 1995 Jan;139(1):387–395. doi: 10.1093/genetics/139.1.387

Identification of Hepatocarcinogen-Resistance Genes in Dba/2 Mice

G H Lee 1, L M Bennett 1, R A Carabeo 1, N R Drinkwater 1
PMCID: PMC1206335  PMID: 7705639

Abstract

Male DBA/2J mice are ~20-fold more susceptible than male C57BL/6J mice to hepatocarcinogenesis induced by perinatal treatment with N,N-diethylnitrosamine (DEN). In order to elucidate the genetic control of hepatocarcinogenesis in DBA/2J mice, male BXD recombinant inbred, D2B6F(1) X B6 backcross, and D2B6F(2) intercross mice were treated at 12 days of age with DEN and liver tumors were enumerated at 32 weeks. Interestingly, the distribution of mean tumor multiplicities among BXD recombinant inbred strains indicated that hepatocarcinogen-sensitive DBA/2 mice carry multiple genes with opposing effects on the susceptibility to liver tumor induction. By analyzing D2B6F(1) X B6 backcross and D2B6F(2) intercross mice for their liver tumor multiplicity phenotypes and for their genotypes at simple sequence repeat marker loci, we mapped two resistance genes carried by DBA/2J mice, designated Hcr1 and -2, to chromosomes 4 and 10, respectively. Hcr1 and Hcr2 resolved the genetic variance in the backcross population well, indicating that these resistance loci are the major determinants of the variance in the backcross population. Although our collection of 100 simple sequence repeat markers allowed linkage analysis for ~95% of the genome, we failed to map any sensitivity alleles for DBA/2J mice. Thus, it is likely that the susceptibility of DBA/2J mice is the consequence of the combined effects of multiple sensitivity loci.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aitman T. J., Hearne C. M., McAleer M. A., Todd J. A. Mononucleotide repeats are an abundant source of length variants in mouse genomic DNA. Mamm Genome. 1991;1(4):206–210. doi: 10.1007/BF00352326. [DOI] [PubMed] [Google Scholar]
  2. Buetow K. H., Murray J. C., Israel J. L., London W. T., Smith M., Kew M., Blanquet V., Brechot C., Redeker A., Govindarajah S. Loss of heterozygosity suggests tumor suppressor gene responsible for primary hepatocellular carcinoma. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8852–8856. doi: 10.1073/pnas.86.22.8852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Demant P., Oomen L. C., Oudshoorn-Snoek M. Genetics of tumor susceptibility in the mouse: MHC and non-MHC genes. Adv Cancer Res. 1989;53:117–179. doi: 10.1016/s0065-230x(08)60281-x. [DOI] [PubMed] [Google Scholar]
  4. Dietrich W., Katz H., Lincoln S. E., Shin H. S., Friedman J., Dracopoli N. C., Lander E. S. A genetic map of the mouse suitable for typing intraspecific crosses. Genetics. 1992 Jun;131(2):423–447. doi: 10.1093/genetics/131.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Diwan B. A., Rice J. M., Ohshima M., Ward J. M. Interstrain differences in susceptibility to liver carcinogenesis initiated by N-nitrosodiethylamine and its promotion by phenobarbital in C57BL/6NCr, C3H/HeNCrMTV- and DBA/2NCr mice. Carcinogenesis. 1986 Feb;7(2):215–220. doi: 10.1093/carcin/7.2.215. [DOI] [PubMed] [Google Scholar]
  6. Dragani T. A., Manenti G., Della Porta G. Quantitative analysis of genetic susceptibility to liver and lung carcinogenesis in mice. Cancer Res. 1991 Dec 1;51(23 Pt 1):6299–6303. [PubMed] [Google Scholar]
  7. Drinkwater N. R., Bennett L. M. Genetic control of carcinogenesis in experimental animals. Prog Exp Tumor Res. 1991;33:1–20. doi: 10.1159/000419242. [DOI] [PubMed] [Google Scholar]
  8. Drinkwater N. R., Ginsler J. J. Genetic control of hepatocarcinogenesis in C57BL/6J and C3H/HeJ inbred mice. Carcinogenesis. 1986 Oct;7(10):1701–1707. doi: 10.1093/carcin/7.10.1701. [DOI] [PubMed] [Google Scholar]
  9. Drinkwater N. R., Klotz J. H. Statistical methods for the analysis of tumor multiplicity data. Cancer Res. 1981 Jan;41(1):113–119. [PubMed] [Google Scholar]
  10. Gariboldi M., Manenti G., Canzian F., Falvella F. S., Pierotti M. A., Della Porta G., Binelli G., Dragani T. A. Chromosome mapping of murine susceptibility loci to liver carcinogenesis. Cancer Res. 1993 Jan 15;53(2):209–211. [PubMed] [Google Scholar]
  11. Hanigan M. H., Kemp C. J., Ginsler J. J., Drinkwater N. R. Rapid growth of preneoplastic lesions in hepatocarcinogen-sensitive C3H/HeJ male mice relative to C57BL/6J male mice. Carcinogenesis. 1988 Jun;9(6):885–890. doi: 10.1093/carcin/9.6.885. [DOI] [PubMed] [Google Scholar]
  12. Hanigan M. H., Winkler M. L., Drinkwater N. R. Partial hepatectomy is a promoter of hepatocarcinogenesis in C57BL/6J male mice but not in C3H/HeJ male mice. Carcinogenesis. 1990 Apr;11(4):589–594. doi: 10.1093/carcin/11.4.589. [DOI] [PubMed] [Google Scholar]
  13. Hilberg F., Aguzzi A., Howells N., Wagner E. F. c-jun is essential for normal mouse development and hepatogenesis. Nature. 1993 Sep 9;365(6442):179–181. doi: 10.1038/365179a0. [DOI] [PubMed] [Google Scholar]
  14. Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lee G. H., Nomura K., Kitagawa T. Comparative study of diethylnitrosamine-initiated two-stage hepatocarcinogenesis in C3H, C57BL and BALB mice promoted by various hepatopromoters. Carcinogenesis. 1989 Dec;10(12):2227–2230. doi: 10.1093/carcin/10.12.2227. [DOI] [PubMed] [Google Scholar]
  16. Lee G. H., Sawada N., Mochizuki Y., Nomura K., Kitagawa T. Immortal epithelial cells of normal C3H mouse liver in culture: possible precursor populations for spontaneous hepatocellular carcinoma. Cancer Res. 1989 Jan 15;49(2):403–409. [PubMed] [Google Scholar]
  17. Moen C. J., Snoek M., Hart A. A., Demant P. Scc-1, a novel colon cancer susceptibility gene in the mouse: linkage to CD44 (Ly-24, Pgp-1) on chromosome 2. Oncogene. 1992 Mar;7(3):563–566. [PubMed] [Google Scholar]
  18. Nadeau J. H., Davisson M. T., Doolittle D. P., Grant P., Hillyard A. L., Kosowsky M. R., Roderick T. H. Comparative map for mice and humans. Mamm Genome. 1992;3(9):480–536. doi: 10.1007/BF00778825. [DOI] [PubMed] [Google Scholar]
  19. Nishimori H., Ogawa K., Tateno H. Frequent deletion in chromosome 4 and duplication of chromosome 15 in liver epithelial cells derived from long-term culture of C3H mouse hepatocytes. Int J Cancer. 1994 Oct 1;59(1):108–113. doi: 10.1002/ijc.2910590120. [DOI] [PubMed] [Google Scholar]
  20. POST J., HOFFMAN J. CHANGES IN THE REPLICATION TIMES AND PATTERNS OF THE LIVER CELL DURING THE LIFE OF THE RAT. Exp Cell Res. 1964 Oct;36:111–123. doi: 10.1016/0014-4827(64)90165-x. [DOI] [PubMed] [Google Scholar]
  21. Pitot H. C., Goldsworthy T. L., Moran S., Kennan W., Glauert H. P., Maronpot R. R., Campbell H. A. A method to quantitate the relative initiating and promoting potencies of hepatocarcinogenic agents in their dose-response relationships to altered hepatic foci. Carcinogenesis. 1987 Oct;8(10):1491–1499. doi: 10.1093/carcin/8.10.1491. [DOI] [PubMed] [Google Scholar]
  22. Simon D., Knowles B. B., Weith A. Abnormalities of chromosome 1 and loss of heterozygosity on 1p in primary hepatomas. Oncogene. 1991 May;6(5):765–770. [PubMed] [Google Scholar]
  23. Smith G. S., Walford R. L., Mickey M. R. Lifespan and incidence of cancer and other diseases in selected long-lived inbred mice and their F 1 hybrids. J Natl Cancer Inst. 1973 May;50(5):1195–1213. doi: 10.1093/jnci/50.5.1195. [DOI] [PubMed] [Google Scholar]
  24. Taylor B. A., Frankel W. N., Reeves R. H. Mouse chromosome 10. Mamm Genome. 1992;3(Spec No):S153–S161. doi: 10.1007/BF00648428. [DOI] [PubMed] [Google Scholar]
  25. Zhang W. D., Hirohashi S., Tsuda H., Shimosato Y., Yokota J., Terada M., Sugimura T. Frequent loss of heterozygosity on chromosomes 16 and 4 in human hepatocellular carcinoma. Jpn J Cancer Res. 1990 Feb;81(2):108–111. doi: 10.1111/j.1349-7006.1990.tb02534.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES