Skip to main content
Genetics logoLink to Genetics
. 1995 Jan;139(1):407–420. doi: 10.1093/genetics/139.1.407

Germinal Transpositions of the Maize Element Dissociation from T-DNA Loci in Tomato

B J Carroll 1, V I Klimyuk 1, C M Thomas 1, G J Bishop 1, K Harrison 1, S R Scofield 1, JDG Jones 1
PMCID: PMC1206337  PMID: 7705641

Abstract

We have analyzed the pattern of germinal transpositions of artificial Dissociation (Ds) transposons in tomato. T-DNA constructs carrying Ds were transformed into tomato, and the elements were trans-activated by crossing to lines transformed with a stabilized Activator (sAc) that expressed the transposase gene. The sAc T-DNA carried a GUS gene to monitor its segregation. The Ds elements were inserted in a marker gene so that excision from the T-DNA could be monitored. The Ds elements also carried a genetic marker that was intended to be used for reinsertion selection of the elements after excision. Unfortunately, this gene was irreversibly inactivated on crossing to sAc. Germinal excision frequencies of Ds averaged 15-40%, but there was large variation between and within plants. Southern hybridization analysis of stable transposed Ds elements indicated that although unique transpositions predominate, early transposition events can lead to large clonal sectors in the germline of developing plants and to sibling offspring carrying the same transposition event. Multiple germinal transpositions from three different loci were examined for uniqueness, and 15 different transpositions were identified from each of three T-DNA loci that carried a single independent Ds. These were mapped relative to the donor T-DNA loci, and for each locus 70-80% of the transposed elements were closely linked to the donor site.

Full Text

The Full Text of this article is available as a PDF (6.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aarts M. G., Dirkse W. G., Stiekema W. J., Pereira A. Transposon tagging of a male sterility gene in Arabidopsis. Nature. 1993 Jun 24;363(6431):715–717. doi: 10.1038/363715a0. [DOI] [PubMed] [Google Scholar]
  2. Baker B., Coupland G., Fedoroff N., Starlinger P., Schell J. Phenotypic assay for excision of the maize controlling element Ac in tobacco. EMBO J. 1987 Jun;6(6):1547–1554. doi: 10.1002/j.1460-2075.1987.tb02399.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bancroft I., Bhatt A. M., Sjodin C., Scofield S., Jones J. D., Dean C. Development of an efficient two-element transposon tagging system in Arabidopsis thaliana. Mol Gen Genet. 1992 Jun;233(3):449–461. doi: 10.1007/BF00265443. [DOI] [PubMed] [Google Scholar]
  4. Bancroft I., Jones J. D., Dean C. Heterologous transposon tagging of the DRL1 locus in Arabidopsis. Plant Cell. 1993 Jun;5(6):631–638. doi: 10.1105/tpc.5.6.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barnes D. A., Thorner J. Genetic manipulation of Saccharomyces cerevisiae by use of the LYS2 gene. Mol Cell Biol. 1986 Aug;6(8):2828–2838. doi: 10.1128/mcb.6.8.2828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Belzile F., Yoder J. I. Pattern of somatic transposition in a high copy Ac tomato line. Plant J. 1992 Mar;2(2):173–179. [PubMed] [Google Scholar]
  7. Chen J., Greenblatt I. M., Dellaporta S. L. Transposition of Ac from the P locus of maize into unreplicated chromosomal sites. Genetics. 1987 Sep;117(1):109–116. doi: 10.1093/genetics/117.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dooner H. K., Belachew A. Transposition Pattern of the Maize Element Ac from the Bz-M2(ac) Allele. Genetics. 1989 Jun;122(2):447–457. doi: 10.1093/genetics/122.2.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dooner H. K., Keller J., Harper E., Ralston E. Variable Patterns of Transposition of the Maize Element Activator in Tobacco. Plant Cell. 1991 May;3(5):473–482. doi: 10.1105/tpc.3.5.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fedoroff N. V., Furtek D. B., Nelson O. E. Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator (Ac). Proc Natl Acad Sci U S A. 1984 Jun;81(12):3825–3829. doi: 10.1073/pnas.81.12.3825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Greenblatt I M, Brink R A. Twin Mutations in Medium Variegated Pericarp Maize. Genetics. 1962 Apr;47(4):489–501. doi: 10.1093/genetics/47.4.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Healy J., Corr C., DeYoung J., Baker B. Linked and unlinked transposition of a genetically marked Dissociation element in transgenic tomato. Genetics. 1993 Jun;134(2):571–584. doi: 10.1093/genetics/134.2.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hehl R., Baker B. Properties of the maize transposable element Activator in transgenic tobacco plants: a versatile inter-species genetic tool. Plant Cell. 1990 Aug;2(8):709–721. doi: 10.1105/tpc.2.8.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jones J. D., Carland F. M., Maliga P., Dooner H. K. Visual detection of transposition of the maize element activator (ac) in tobacco seedlings. Science. 1989 Apr 14;244(4901):204–207. doi: 10.1126/science.244.4901.204. [DOI] [PubMed] [Google Scholar]
  15. Jones J. D., Carland F., Lim E., Ralston E., Dooner H. K. Preferential transposition of the maize element Activator to linked chromosomal locations in tobacco. Plant Cell. 1990 Aug;2(8):701–707. doi: 10.1105/tpc.2.8.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jones J. D., Shlumukov L., Carland F., English J., Scofield S. R., Bishop G. J., Harrison K. Effective vectors for transformation, expression of heterologous genes, and assaying transposon excision in transgenic plants. Transgenic Res. 1992 Nov;1(6):285–297. doi: 10.1007/BF02525170. [DOI] [PubMed] [Google Scholar]
  17. Klimyuk V. I., Carroll B. J., Thomas C. M., Jones J. D. Alkali treatment for rapid preparation of plant material for reliable PCR analysis. Plant J. 1993 Mar;3(3):493–494. doi: 10.1111/j.1365-313x.1993.tb00169.x. [DOI] [PubMed] [Google Scholar]
  18. MCCLINTOCK B. Controlling elements and the gene. Cold Spring Harb Symp Quant Biol. 1956;21:197–216. doi: 10.1101/sqb.1956.021.01.017. [DOI] [PubMed] [Google Scholar]
  19. Moreno M. A., Chen J., Greenblatt I., Dellaporta S. L. Reconstitutional mutagenesis of the maize P gene by short-range Ac transpositions. Genetics. 1992 Aug;131(4):939–956. doi: 10.1093/genetics/131.4.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nickoloff J. A., Chen E. Y., Heffron F. A 24-base-pair DNA sequence from the MAT locus stimulates intergenic recombination in yeast. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7831–7835. doi: 10.1073/pnas.83.20.7831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Osborne B. I., Corr C. A., Prince J. P., Hehl R., Tanksley S. D., McCormick S., Baker B. Ac transposition from a T-DNA can generate linked and unlinked clusters of insertions in the tomato genome. Genetics. 1991 Nov;129(3):833–844. doi: 10.1093/genetics/129.3.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Scofield S. R., English J. J., Jones J. D. High level expression of the Activator transposase gene inhibits the excision of Dissociation in tobacco cotyledons. Cell. 1993 Nov 5;75(3):507–517. doi: 10.1016/0092-8674(93)90385-4. [DOI] [PubMed] [Google Scholar]
  23. Thomas C. M., Jones D. A., English J. J., Carroll B. J., Bennetzen J. L., Harrison K., Burbidge A., Bishop G. J., Jones J. D. Analysis of the chromosomal distribution of transposon-carrying T-DNAs in tomato using the inverse polymerase chain reaction. Mol Gen Genet. 1994 Mar;242(5):573–585. doi: 10.1007/BF00285281. [DOI] [PubMed] [Google Scholar]
  24. Weil M. D., McClelland M. Enzymatic cleavage of a bacterial genome at a 10-base-pair recognition site. Proc Natl Acad Sci U S A. 1989 Jan;86(1):51–55. doi: 10.1073/pnas.86.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES