Skip to main content
Genetics logoLink to Genetics
. 1995 Feb;139(2):1013–1030. doi: 10.1093/genetics/139.2.1013

Effective Size of Populations under Selection

E Santiago 1, A Caballero 1
PMCID: PMC1206353  PMID: 7713405

Abstract

Equations to approximate the effective size (N(e)) of populations under continued selection are obtained that include the possibility of partial full-sib mating and other systems such as assortative mating. The general equation for the case of equal number of sexes and constant number of breeding individuals (N) is N(e) = 4N/[2(1 - α(I)) + (S(k)(2) + 4Q(2)C(2)) (1 + α(I) + 2α(O))], where S(k)(2) is the variance of family size due to sampling without selection, C(2) is the variance of selective advantages among families (the squared coefficient of variation of the expected number of offspring per family), α(I) is the deviation from Hardy-Weinberg proportions, α(O) is the correlation between genes of male and female parents, and Q(2) is the term accounting for the cumulative effect of selection on an inherited trait. This is obtained as Q = 2/[2 - G(1 + r)], where G is the remaining proportion of genetic variance in selected individuals and r is the correlation of the expected selective values of male and female parents. The method is also extended to the general case of different numbers of male and female parents. The predictive value of the formulae is tested under a model of truncation selection with the infinitesimal model of gene effects, where C(2) and G are a function of the selection intensity, the heritability and the intraclass correlation of sibs. Under random mating r = α(I) = -1/(N - 1) and α(O) = 0. Under partial full-sib mating with an average proportion β of full-sib matings per generation, r & β and α(O) & α(I) & β/ (4 - 3β). The prediction equation is compared to other approximations based on the long-term contributions of ancestors to descendants. Finally, based on the approach followed, a system of mating (compensatory mating) is proposed to reduce rates of inbreeding without loss of response in selection programs in which selected individuals from the largest families are mated to those from the smallest families.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Caballero A. Developments in the prediction of effective population size. Heredity (Edinb) 1994 Dec;73(Pt 6):657–679. doi: 10.1038/hdy.1994.174. [DOI] [PubMed] [Google Scholar]
  2. Caballero A., Hill W. G. Effective size of nonrandom mating populations. Genetics. 1992 Apr;130(4):909–916. doi: 10.1093/genetics/130.4.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Campistol J. M., Solé M., Muñoz-Gómez J., Riba J., Ramón R., Revert L. Pathological fractures in patients who have amyloidosis associated with dialysis. A report of five cases. J Bone Joint Surg Am. 1990 Apr;72(4):568–574. [PubMed] [Google Scholar]
  4. Jones L. P. Effects of artificial selection on rates of inbreeding in populations of Drosophilia melanogaster. Aust J Biol Sci. 1969 Feb;22(1):143–155. [PubMed] [Google Scholar]
  5. Mendell N. R., Elston R. C. Multifactorial qualitative traits: genetic analysis and prediction of recurrence risks. Biometrics. 1974 Mar;30(1):41–57. [PubMed] [Google Scholar]
  6. Price G. R. Selection and covariance. Nature. 1970 Aug 1;227(5257):520–521. doi: 10.1038/227520a0. [DOI] [PubMed] [Google Scholar]
  7. Wray N. R., Thompson R. Prediction of rates of inbreeding in selected populations. Genet Res. 1990 Feb;55(1):41–54. doi: 10.1017/s0016672300025180. [DOI] [PubMed] [Google Scholar]
  8. Wright S. Evolution in Mendelian Populations. Genetics. 1931 Mar;16(2):97–159. doi: 10.1093/genetics/16.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES