Skip to main content
Genetics logoLink to Genetics
. 1995 Feb;139(2):1031–1044. doi: 10.1093/genetics/139.2.1031

Modeling Interference in Genetic Recombination

M S McPeek 1, T P Speed 1
PMCID: PMC1206354  PMID: 7713406

Abstract

In analyzing genetic linkage data it is common to assume that the locations of crossovers along a chromosome follow a Poisson process, whereas it has long been known that this assumption does not fit the data. In many organisms it appears that the presence of a crossover inhibits the formation of another nearby, a phenomenon known as ``interference.'' We discuss several point process models for recombination that incorporate position interference but assume no chromatid interference. Using stochastic simulation, we are able to fit the models to a multilocus Drosophila dataset by the method of maximum likelihood. We find that some biologically inspired point process models incorporating one or two additional parameters provide a dramatically better fit to the data than the usual ``no-interference'' Poisson model.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CARTER T. C., ROBERTSON A. A mathematical treatment of genetical recombination using a four-strand model. Proc R Soc Lond B Biol Sci. 1952 Apr 24;139(896):410–426. doi: 10.1098/rspb.1952.0021. [DOI] [PubMed] [Google Scholar]
  2. Cobbs G. Renewal process approach to the theory of genetic linkage: case of no chromatid interference. Genetics. 1978 Jul;89(3):563–581. doi: 10.1093/genetics/89.3.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Foss E., Lande R., Stahl F. W., Steinberg C. M. Chiasma interference as a function of genetic distance. Genetics. 1993 Mar;133(3):681–691. doi: 10.1093/genetics/133.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goldgar D. E., Fain P. R. Models of multilocus recombination: nonrandomness in chiasma number and crossover positions. Am J Hum Genet. 1988 Jul;43(1):38–45. [PMC free article] [PubMed] [Google Scholar]
  5. Liberman U., Karlin S. Theoretical models of genetic map functions. Theor Popul Biol. 1984 Jun;25(3):331–346. doi: 10.1016/0040-5809(84)90013-3. [DOI] [PubMed] [Google Scholar]
  6. OWEN A. R. G. The theory of genetical recombination. Adv Genet. 1950;3:117–157. doi: 10.1016/s0065-2660(08)60084-x. [DOI] [PubMed] [Google Scholar]
  7. Pascoe L., Morton N. E. The use of map functions in multipoint mapping. Am J Hum Genet. 1987 Feb;40(2):174–183. [PMC free article] [PubMed] [Google Scholar]
  8. Risch N., Lange K. An alternative model of recombination and interference. Ann Hum Genet. 1979 Jul;43(1):61–70. doi: 10.1111/j.1469-1809.1979.tb01549.x. [DOI] [PubMed] [Google Scholar]
  9. Risch N., Lange K. Statistical analysis of multilocus recombination. Biometrics. 1983 Dec;39(4):949–963. [PubMed] [Google Scholar]
  10. Speed T. P., McPeek M. S., Evans S. N. Robustness of the no-interference model for ordering genetic markers. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3103–3106. doi: 10.1073/pnas.89.7.3103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Stam P. Interference in Genetic Crossing over and Chromosome Mapping. Genetics. 1979 Jun;92(2):573–594. doi: 10.1093/genetics/92.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Weinstein A. The Theory of Multiple-Strand Crossing over. Genetics. 1936 May;21(3):155–199. doi: 10.1093/genetics/21.3.155. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES