Skip to main content
Genetics logoLink to Genetics
. 1995 Feb;139(2):1045–1056. doi: 10.1093/genetics/139.2.1045

Statistical Analysis of Crossover Interference Using the Chi-Square Model

H Zhao 1, T P Speed 1, M S McPeek 1
PMCID: PMC1206355  PMID: 7713407

Abstract

The chi-square model (also known as the gamma model with integer shape parameter) for the occurrence of crossovers along a chromosome was first proposed in the 1940's as a description of interference that was mathematically tractable but without biological basis. Recently, the chi-square model has been reintroduced into the literature from a biological perspective. It arises as a result of certain hypothesized constraints on the resolution of randomly distributed crossover intermediates. In this paper under the assumption of no chromatid interference, the probability for any single spore or tetrad joint recombination pattern is derived under the chi-square model. The method of maximum likelihood is then used to estimate the chi-square parameter m and genetic distances among marker loci. We discuss how to interpret the goodness-of-fit statistics appropriately when there are some recombination classes that have only a small number of observations. Finally, comparisons are made between the chi-square model and some other tractable models in the literature.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARRATT R. W., NEWMEYER D., PERKINS D. D., GARNJOBST L. Map construction in Neurospora crassa. Adv Genet. 1954;6:1–93. doi: 10.1016/s0065-2660(08)60127-3. [DOI] [PubMed] [Google Scholar]
  2. BOLE-GOWDA B. N., PERKINS D. D., STRICKLAND W. N. Crossing-over and interference in the centromere region of linkage group I of Neurospora. Genetics. 1962 Sep;47:1243–1252. doi: 10.1093/genetics/47.9.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cobbs G. Renewal process approach to the theory of genetic linkage: case of no chromatid interference. Genetics. 1978 Jul;89(3):563–581. doi: 10.1093/genetics/89.3.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Foss E., Lande R., Stahl F. W., Steinberg C. M. Chiasma interference as a function of genetic distance. Genetics. 1993 Mar;133(3):681–691. doi: 10.1093/genetics/133.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goldgar D. E., Fain P. R. Models of multilocus recombination: nonrandomness in chiasma number and crossover positions. Am J Hum Genet. 1988 Jul;43(1):38–45. [PMC free article] [PubMed] [Google Scholar]
  6. Hawthorne D C, Mortimer R K. Chromosome Mapping in Saccharomyces: Centromere-Linked Genes. Genetics. 1960 Aug;45(8):1085–1110. doi: 10.1093/genetics/45.8.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hawthorne D. C., Mortimer R. K. Genetic mapping of nonsense suppressors in yeast. Genetics. 1968 Dec;60(4):735–742. doi: 10.1093/genetics/60.4.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. McInnis M. G., Chakravarti A., Blaschak J., Petersen M. B., Sharma V., Avramopoulos D., Blouin J. L., König U., Brahe C., Matise T. C. A linkage map of human chromosome 21:43 PCR markers at average intervals of 2.5 cM. Genomics. 1993 Jun;16(3):562–571. doi: 10.1006/geno.1993.1231. [DOI] [PubMed] [Google Scholar]
  9. Mortimer R. K., Hawthorne D. C. Genetic Mapping in Saccharomyces IV. Mapping of Temperature-Sensitive Genes and Use of Disomic Strains in Localizing Genes. Genetics. 1973 May;74(1):33–54. doi: 10.1093/genetics/74.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mortimer R. K., Hawthorne D. C. Genetic mapping in Saccharomyces. Genetics. 1966 Jan;53(1):165–173. doi: 10.1093/genetics/53.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. PERKINS D. D. Crossing-over and interference in a multiply marked chromosome arm of Neurospora. Genetics. 1962 Sep;47:1253–1274. doi: 10.1093/genetics/47.9.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Risch N., Lange K. An alternative model of recombination and interference. Ann Hum Genet. 1979 Jul;43(1):61–70. doi: 10.1111/j.1469-1809.1979.tb01549.x. [DOI] [PubMed] [Google Scholar]
  13. Risch N., Lange K. Statistical analysis of multilocus recombination. Biometrics. 1983 Dec;39(4):949–963. [PubMed] [Google Scholar]
  14. STRICKLAND W. N. Tetrad analysis of short chromosome regions of Neurospora crassa. Genetics. 1961 Sep;46:1125–1141. doi: 10.1093/genetics/46.9.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Snow R. Maximum likelihood estimation of linkage and interference from tetrad data. Genetics. 1979 May;92(1):231–245. doi: 10.1093/genetics/92.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Speed T. P., McPeek M. S., Evans S. N. Robustness of the no-interference model for ordering genetic markers. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3103–3106. doi: 10.1073/pnas.89.7.3103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Weinstein A. The Theory of Multiple-Strand Crossing over. Genetics. 1936 May;21(3):155–199. doi: 10.1093/genetics/21.3.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Zhao H., McPeek M. S., Speed T. P. Statistical analysis of chromatid interference. Genetics. 1995 Feb;139(2):1057–1065. doi: 10.1093/genetics/139.2.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES