Skip to main content
Genetics logoLink to Genetics
. 1995 Feb;139(2):631–648. doi: 10.1093/genetics/139.2.631

Transposon Insertions Causing Constitutive Sex-Lethal Activity in Drosophila Melanogaster Affect Sxl Sex-Specific Transcript Splicing

M Bernstein 1, R A Lersch 1, L Subrahmanyan 1, T W Cline 1
PMCID: PMC1206370  PMID: 7713421

Abstract

Sex-lethal (Sxl) gene products induce female development in Drosophila melanogaster and suppress the transcriptional hyperactivation of X-linked genes responsible for male X-chromosome dosage compensation. Control of Sxl functioning by the dose of X-chromosomes normally ensures that the female-specific functions of this developmental switch gene are only expressed in diplo-X individuals. Although the immediate effect of X-chromosome dose is on Sxl transcription, during most of the life cycle ``on'' vs. ``off'' reflects alternative Sxl RNA splicing, with the female (productive) splicing mode maintained by a positive feedback activity of SXL protein on Sxl pre-mRNA splicing. ``Male-lethal'' (Sxl(M)) gain-of-function alleles subvert Sxl control by X-chromosome dose, allowing female Sxl functions to be expressed independent of the positive regulators upstream of Sxl. As a consequence, Sxl(M) haplo-X animals (chromosomal males) die because of improper dosage compensation, and Sxl(M) chromosomal females survive the otherwise lethal effects of mutations in upstream positive regulators. Five independent spontaneous Sxl(M) alleles were shown previously to be transposon insertions into what was subsequently found to be the region of regulated sex-specific Sxl RNA splicing. We show that these five alleles represent three different mutant types: Sxl(M1), Sxl(M3), and Sxl(M4). Sxl(M1) is an insertion of a roo element 674 bp downstream of the translation-terminating male-specific exon. Sxl(M3) is an insertion of a hobo transposon (not 297 as previously reported) into the 3' splice site of the male exon, and Sxl(M4) is an insertion of a novel transposon into the male-specific exon itself. We show that these three gain-of-function mutants differ considerably in their ability to bypass the sex determination signal, with Sxl(M4) being the strongest and Sxl(M1) the weakest. This difference is also reflected in effects of these mutations on sex-specific RNA splicing and on the rate of appearance of SXL protein in male embryos. Transcript analysis of double-mutant male-viable Sxl(M) derivatives in which the Sxl(M) insertion is cis to loss-of-function mutations, combined with other results reported here, indicates that the constitutive character of these Sxl(M) alleles is a consequence of an alteration of the structure of the pre-mRNA that allows some level of female splicing to occur even in the absence of functional SXL protein. Surprisingly, however, most of the constitutive character of Sxl(M) alleles appears to depend on the mutant alleles' responsiveness, perhaps greater than wild-type, to the autoregulatory splicing activity of the wild-type SXL proteins they produce.

Full Text

The Full Text of this article is available as a PDF (9.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell L. R., Horabin J. I., Schedl P., Cline T. W. Positive autoregulation of sex-lethal by alternative splicing maintains the female determined state in Drosophila. Cell. 1991 Apr 19;65(2):229–239. doi: 10.1016/0092-8674(91)90157-t. [DOI] [PubMed] [Google Scholar]
  2. Bell L. R., Maine E. M., Schedl P., Cline T. W. Sex-lethal, a Drosophila sex determination switch gene, exhibits sex-specific RNA splicing and sequence similarity to RNA binding proteins. Cell. 1988 Dec 23;55(6):1037–1046. doi: 10.1016/0092-8674(88)90248-6. [DOI] [PubMed] [Google Scholar]
  3. Bernstein M., Cline T. W. Differential effects of Sex-lethal mutations on dosage compensation early in Drosophila development. Genetics. 1994 Mar;136(3):1051–1061. doi: 10.1093/genetics/136.3.1051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boeke J. D., Chapman K. B. Retrotransposition mechanisms. Curr Opin Cell Biol. 1991 Jun;3(3):502–507. doi: 10.1016/0955-0674(91)90079-e. [DOI] [PubMed] [Google Scholar]
  5. Bopp D., Bell L. R., Cline T. W., Schedl P. Developmental distribution of female-specific Sex-lethal proteins in Drosophila melanogaster. Genes Dev. 1991 Mar;5(3):403–415. doi: 10.1101/gad.5.3.403. [DOI] [PubMed] [Google Scholar]
  6. Bopp D., Horabin J. I., Lersch R. A., Cline T. W., Schedl P. Expression of the Sex-lethal gene is controlled at multiple levels during Drosophila oogenesis. Development. 1993 Jul;118(3):797–812. doi: 10.1242/dev.118.3.797. [DOI] [PubMed] [Google Scholar]
  7. Cline T. W. A female-specific lethal lesion in an X-linked positive regulator of the Drosophila sex determination gene, Sex-lethal. Genetics. 1986 Jul;113(3):641–663. doi: 10.1093/genetics/113.3.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cline T. W. Maternal and zygotic sex-specific gene interactions in Drosophila melanogaster. Genetics. 1980 Dec;96(4):903–926. doi: 10.1093/genetics/96.4.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cline T. W. The interaction between daughterless and sex-lethal in triploids: a lethal sex-transforming maternal effect linking sex determination and dosage compensation in Drosophila melanogaster. Dev Biol. 1983 Feb;95(2):260–274. doi: 10.1016/0012-1606(83)90027-1. [DOI] [PubMed] [Google Scholar]
  10. Cline T. W. Two closely linked mutations in Drosophila melanogaster that are lethal to opposite sexes and interact with daughterless. Genetics. 1978 Dec;90(4):683–698. doi: 10.1093/genetics/90.4.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Finnegan D. J., Fawcett D. H. Transposable elements in Drosophila melanogaster. Oxf Surv Eukaryot Genes. 1986;3:1–62. [PubMed] [Google Scholar]
  12. Gergen J. P. Dosage Compensation in Drosophila: Evidence That daughterless and Sex-lethal Control X Chromosome Activity at the Blastoderm Stage of Embryogenesis. Genetics. 1987 Nov;117(3):477–485. doi: 10.1093/genetics/117.3.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Horabin J. I., Schedl P. Regulated splicing of the Drosophila sex-lethal male exon involves a blockage mechanism. Mol Cell Biol. 1993 Mar;13(3):1408–1414. doi: 10.1128/mcb.13.3.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Horabin J. I., Schedl P. Sex-lethal autoregulation requires multiple cis-acting elements upstream and downstream of the male exon and appears to depend largely on controlling the use of the male exon 5' splice site. Mol Cell Biol. 1993 Dec;13(12):7734–7746. doi: 10.1128/mcb.13.12.7734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hultman T., Ståhl S., Hornes E., Uhlén M. Direct solid phase sequencing of genomic and plasmid DNA using magnetic beads as solid support. Nucleic Acids Res. 1989 Jul 11;17(13):4937–4946. doi: 10.1093/nar/17.13.4937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Inoue K., Hoshijima K., Sakamoto H., Shimura Y. Binding of the Drosophila sex-lethal gene product to the alternative splice site of transformer primary transcript. Nature. 1990 Mar 29;344(6265):461–463. doi: 10.1038/344461a0. [DOI] [PubMed] [Google Scholar]
  17. Ji H., Moore D. P., Blomberg M. A., Braiterman L. T., Voytas D. F., Natsoulis G., Boeke J. D. Hotspots for unselected Ty1 transposition events on yeast chromosome III are near tRNA genes and LTR sequences. Cell. 1993 Jun 4;73(5):1007–1018. doi: 10.1016/0092-8674(93)90278-x. [DOI] [PubMed] [Google Scholar]
  18. Kenan D. J., Query C. C., Keene J. D. RNA recognition: towards identifying determinants of specificity. Trends Biochem Sci. 1991 Jun;16(6):214–220. doi: 10.1016/0968-0004(91)90088-d. [DOI] [PubMed] [Google Scholar]
  19. Keyes L. N., Cline T. W., Schedl P. The primary sex determination signal of Drosophila acts at the level of transcription. Cell. 1992 Mar 6;68(5):933–943. doi: 10.1016/0092-8674(92)90036-c. [DOI] [PubMed] [Google Scholar]
  20. Lucchesi J. C., Skripsky T. The link between dosage compensation and sex differentiation in Drosophila melanogaster. Chromosoma. 1981;82(2):217–227. doi: 10.1007/BF00286106. [DOI] [PubMed] [Google Scholar]
  21. Maine E. M., Salz H. K., Cline T. W., Schedl P. The Sex-lethal gene of Drosophila: DNA alterations associated with sex-specific lethal mutations. Cell. 1985 Dec;43(2 Pt 1):521–529. doi: 10.1016/0092-8674(85)90181-3. [DOI] [PubMed] [Google Scholar]
  22. Oliver B., Kim Y. J., Baker B. S. Sex-lethal, master and slave: a hierarchy of germ-line sex determination in Drosophila. Development. 1993 Nov;119(3):897–908. doi: 10.1242/dev.119.3.897. [DOI] [PubMed] [Google Scholar]
  23. Pauli D., Oliver B., Mahowald A. P. The role of the ovarian tumor locus in Drosophila melanogaster germ line sex determination. Development. 1993 Sep;119(1):123–134. doi: 10.1242/dev.119.1.123. [DOI] [PubMed] [Google Scholar]
  24. Sakamoto H., Inoue K., Higuchi I., Ono Y., Shimura Y. Control of Drosophila Sex-lethal pre-mRNA splicing by its own female-specific product. Nucleic Acids Res. 1992 Nov 11;20(21):5533–5540. doi: 10.1093/nar/20.21.5533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Salz H. K., Cline T. W., Schedl P. Functional changes associated with structural alterations induced by mobilization of a P element inserted in the Sex-lethal gene of Drosophila. Genetics. 1987 Oct;117(2):221–231. doi: 10.1093/genetics/117.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Salz H. K., Maine E. M., Keyes L. N., Samuels M. E., Cline T. W., Schedl P. The Drosophila female-specific sex-determination gene, Sex-lethal, has stage-, tissue-, and sex-specific RNAs suggesting multiple modes of regulation. Genes Dev. 1989 May;3(5):708–719. doi: 10.1101/gad.3.5.708. [DOI] [PubMed] [Google Scholar]
  27. Salz H. K. The genetic analysis of snf: a Drosophila sex determination gene required for activation of Sex-lethal in both the germline and the soma. Genetics. 1992 Mar;130(3):547–554. doi: 10.1093/genetics/130.3.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Samuels M. E., Schedl P., Cline T. W. The complex set of late transcripts from the Drosophila sex determination gene sex-lethal encodes multiple related polypeptides. Mol Cell Biol. 1991 Jul;11(7):3584–3602. doi: 10.1128/mcb.11.7.3584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sosnowski B. A., Belote J. M., McKeown M. Sex-specific alternative splicing of RNA from the transformer gene results from sequence-dependent splice site blockage. Cell. 1989 Aug 11;58(3):449–459. doi: 10.1016/0092-8674(89)90426-1. [DOI] [PubMed] [Google Scholar]
  30. Staden R. The current status and portability of our sequence handling software. Nucleic Acids Res. 1986 Jan 10;14(1):217–231. doi: 10.1093/nar/14.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Steinmann-Zwicky M., Schmid H., Nöthiger R. Cell-autonomous and inductive signals can determine the sex of the germ line of drosophila by regulating the gene Sxl. Cell. 1989 Apr 7;57(1):157–166. doi: 10.1016/0092-8674(89)90181-5. [DOI] [PubMed] [Google Scholar]
  32. Steinmann-Zwicky M. Sex determination in Drosophila: sis-b, a major numerator element of the X:A ratio in the soma, does not contribute to the X:A ratio in the germ line. Development. 1993 Feb;117(2):763–767. doi: 10.1242/dev.117.2.763. [DOI] [PubMed] [Google Scholar]
  33. Valcárcel J., Singh R., Zamore P. D., Green M. R. The protein Sex-lethal antagonizes the splicing factor U2AF to regulate alternative splicing of transformer pre-mRNA. Nature. 1993 Mar 11;362(6416):171–175. doi: 10.1038/362171a0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES