Skip to main content
Genetics logoLink to Genetics
. 1995 Feb;139(2):849–859. doi: 10.1093/genetics/139.2.849

Polygenic Mutation in Drosophila Melanogaster: Non-Linear Divergence among Unselected Strains

TFC Mackay 1, R F Lyman 1, W G Hill 1
PMCID: PMC1206385  PMID: 7713436

Abstract

A highly inbred strain of Drosophila melanogaster was subdivided into 20 replicate sublines that were maintained independently with 10 pairs of randomly sampled parents per generation for 180 generations. The variance between lines in abdominal and sternopleural bristle number increased little after 100 generations, in contrast to the neutral expectation of a linear increase; and the covariances of line means between different generations declined with increasing number of generations apart, in contrast to the neutral expectation of constant covariance. Thus, under a neutral model, the estimates of mutational variance were lower than for previous estimates from the first 100 generations of subline divergence. An autoregressive model was fitted to the variance of line means that indicated strong natural selection. There is no single unequivocal explanation for the results. Possible and nonexclusive alternatives include stabilizing selection on bristle number and deleterious effects on fitness of bristle mutations. The inferred strengths of selection on both traits are too high for stabilizing selection alone, and the between-line variance did not continue to increase sufficiently for pleiotropy alone to account for the observations. A third potential explanation that does not invoke selection is duplicate epistasis between mutations affecting bristle number.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barton N. H. Pleiotropic models of quantitative variation. Genetics. 1990 Mar;124(3):773–782. doi: 10.1093/genetics/124.3.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Caballero A., Keightley P. D. A pleiotropic nonadditive model of variation in quantitative traits. Genetics. 1994 Nov;138(3):883–900. doi: 10.1093/genetics/138.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Caballero A., Toro M. A., López-Fanjul C. The response to artificial selection from new mutations in Drosophila melanogaster. Genetics. 1991 May;128(1):89–102. doi: 10.1093/genetics/128.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cockerham C. C. Further observations on the evolution of additive genetic variation with mutation. Theor Popul Biol. 1994 Feb;45(1):92–100. doi: 10.1006/tpbi.1994.1005. [DOI] [PubMed] [Google Scholar]
  5. Cockerham C. C., Tachida H. Evolution and maintenance of quantitative genetic variation by mutations. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6205–6209. doi: 10.1073/pnas.84.17.6205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gavrilets S., de Jong G. Pleiotropic models of polygenic variation, stabilizing selection, and epistasis. Genetics. 1993 Jun;134(2):609–625. doi: 10.1093/genetics/134.2.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Georgiev G. P., Ilyin Y. V., Chmeliauskaite V. G., Ryskov A. P., Kramerov D. A., Skryabin K. G., Krayev A. S., Lukanidin E. M., Grigoryan M. S. Mobile dispersed genetic elements and other middle repetitive DNA sequences in the genomes of Drosophila and mouse: transcription and biological significance. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 2):641–654. doi: 10.1101/sqb.1981.045.01.082. [DOI] [PubMed] [Google Scholar]
  8. Hill W. G. Predictions of response to artificial selection from new mutations. Genet Res. 1982 Dec;40(3):255–278. doi: 10.1017/s0016672300019145. [DOI] [PubMed] [Google Scholar]
  9. Keightley P. D., Mackay T. F., Caballero A. Accounting for bias in estimates of the rate of polygenic mutation. Proc Biol Sci. 1993 Sep 22;253(1338):291–296. doi: 10.1098/rspb.1993.0116. [DOI] [PubMed] [Google Scholar]
  10. Kondrashov A. S., Turelli M. Deleterious mutations, apparent stabilizing selection and the maintenance of quantitative variation. Genetics. 1992 Oct;132(2):603–618. doi: 10.1093/genetics/132.2.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lande R. The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet Res. 1975 Dec;26(3):221–235. doi: 10.1017/s0016672300016037. [DOI] [PubMed] [Google Scholar]
  12. López M. A., López-Fanjul C. Spontaneous mutation for a quantitative trait in Drosophila melanogaster. II. Distribution of mutant effects on the trait and fitness. Genet Res. 1993 Apr;61(2):117–126. doi: 10.1017/s0016672300031220. [DOI] [PubMed] [Google Scholar]
  13. Mackay T. F., Fry J. D., Lyman R. F., Nuzhdin S. V. Polygenic mutation in Drosophila melanogaster: estimates from response to selection of inbred strains. Genetics. 1994 Mar;136(3):937–951. doi: 10.1093/genetics/136.3.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mackay T. F., Lyman R. F., Jackson M. S. Effects of P element insertions on quantitative traits in Drosophila melanogaster. Genetics. 1992 Feb;130(2):315–332. doi: 10.1093/genetics/130.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nuzhdin S. V., Fry J. D., Mackay T. F. Polygenic mutation in Drosophila melanogaster: the causal relationship of bristle number to fitness. Genetics. 1995 Feb;139(2):861–872. doi: 10.1093/genetics/139.2.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nuzhdin S. V., Mackay T. F. Direct determination of retrotransposon transposition rates in Drosophila melanogaster. Genet Res. 1994 Apr;63(2):139–144. doi: 10.1017/s0016672300032249. [DOI] [PubMed] [Google Scholar]
  17. Potter S. S., Brorein W. J., Jr, Dunsmuir P., Rubin G. M. Transposition of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell. 1979 Jun;17(2):415–427. doi: 10.1016/0092-8674(79)90168-5. [DOI] [PubMed] [Google Scholar]
  18. Shrimpton A. E., Montgomery E. A., Langley C. H. OM Mutations in DROSOPHILA ANANASSAE Are Linked to Insertions of a Transposable Element. Genetics. 1986 Sep;114(1):125–135. doi: 10.1093/genetics/114.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sved J. A. An estimate of heterosis in Drosophila melanogaster. Genet Res. 1971 Aug;18(1):97–105. doi: 10.1017/s0016672300012453. [DOI] [PubMed] [Google Scholar]
  20. Sved J. A. Fitness of third chromosome homozygotes in Drosophila melanogaster. Genet Res. 1975 Apr;25(2):197–200. doi: 10.1017/s0016672300015603. [DOI] [PubMed] [Google Scholar]
  21. Turelli M. Effects of pleiotropy on predictions concerning mutation-selection balance for polygenic traits. Genetics. 1985 Sep;111(1):165–195. doi: 10.1093/genetics/111.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Turelli M. Heritable genetic variation via mutation-selection balance: Lerch's zeta meets the abdominal bristle. Theor Popul Biol. 1984 Apr;25(2):138–193. doi: 10.1016/0040-5809(84)90017-0. [DOI] [PubMed] [Google Scholar]
  23. Zeng Z. B., Hill W. G. The selection limit due to the conflict between truncation and stabilizing selection with mutation. Genetics. 1986 Dec;114(4):1313–1328. doi: 10.1093/genetics/114.4.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES