Skip to main content
Genetics logoLink to Genetics
. 1995 Feb;139(2):861–872. doi: 10.1093/genetics/139.2.861

Polygenic Mutation in Drosophila Melanogaster: The Causal Relationship of Bristle Number to Fitness

S V Nuzhdin 1, J D Fry 1, TFC Mackay 1
PMCID: PMC1206386  PMID: 7713437

Abstract

The association between sternopleural and abdominal bristle number and fitness in Drosophila melanogaster was determined for sublines of an initially highly inbred strain that were maintained by divergent artificial selection for 150 generations or by random mating for 180 generations. Replicate selection lines had more extreme bristle numbers than those that were maintained without artificial selection at the same census size for approximately the same number of generations. The average fitness, estimated by a single generation of competition against a compound autosome strain, was 0.17 for lines selected for high and low abdominal bristle numbers and 0.19 for lines selected for high and low sternopleural bristle number. The average fitness of unselected lines, 0.46, was significantly higher than that of the selection lines. The fitnesses and the relationships of bristle number to fitness in progeny of all possible crosses of high X high (H X H), high X low (H X L) and low X low (L X L) selection lines were examined to determine whether the observed intermediate optima were caused by direct stabilizing selection on bristle number or by apparent stabilizing selection mediated through deleterious pleiotropic fitness effects of mutations affecting bristle number. Although bristle number was nearly additive for progeny of H X H, H X L and L X L crosses among sternopleural bristle selection lines, their mean fitnesses were not significantly different from each other, or from the mean fitness of the unselected lines, suggesting partly or completely recessive pleiotropic fitness effects cause apparent stabilizing selection. The average fitness of the progeny of H X H abdominal bristle selection lines was not significantly different from the fitness of unselected lines, but the mean fitness of the progeny of L X L crosses was not significantly different from that of the pure low lines. This is consistent with direct selection against low but not high abdominal bristle number, but the interpretation is confounded by variation in average degree of dominance for fitness (on average recessive in the high abdominal bristle selection lines and additive in the low abdominal bristle selection lines). Neither direct stabilizing selection nor pleiotropy, therefore, can account for all the observations.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
  2. Arnason E., Rand D. M. Heteroplasmy of short tandem repeats in mitochondrial DNA of Atlantic cod, Gadus morhua. Genetics. 1992 Sep;132(1):211–220. doi: 10.1093/genetics/132.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barton N. H. Pleiotropic models of quantitative variation. Genetics. 1990 Mar;124(3):773–782. doi: 10.1093/genetics/124.3.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bibb M. J., Van Etten R. A., Wright C. T., Walberg M. W., Clayton D. A. Sequence and gene organization of mouse mitochondrial DNA. Cell. 1981 Oct;26(2 Pt 2):167–180. doi: 10.1016/0092-8674(81)90300-7. [DOI] [PubMed] [Google Scholar]
  5. Caballero A., Keightley P. D. A pleiotropic nonadditive model of variation in quantitative traits. Genetics. 1994 Nov;138(3):883–900. doi: 10.1093/genetics/138.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Caballero A., Toro M. A., López-Fanjul C. The response to artificial selection from new mutations in Drosophila melanogaster. Genetics. 1991 May;128(1):89–102. doi: 10.1093/genetics/128.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cabot E. L., Beckenbach A. T. Simultaneous editing of multiple nucleic acid and protein sequences with ESEE. Comput Appl Biosci. 1989 Jul;5(3):233–234. doi: 10.1093/bioinformatics/5.3.233. [DOI] [PubMed] [Google Scholar]
  8. Cantatore P., Roberti M., Rainaldi G., Saccone C., Gadaleta M. N. Clustering of tRNA genes in Paracentrotus lividus mitochondrial DNA. Curr Genet. 1988;13(1):91–96. doi: 10.1007/BF00365762. [DOI] [PubMed] [Google Scholar]
  9. Clary D. O., Wolstenholme D. R. The mitochondrial DNA molecular of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol. 1985;22(3):252–271. doi: 10.1007/BF02099755. [DOI] [PubMed] [Google Scholar]
  10. Crozier R. H., Crozier Y. C. The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. Genetics. 1993 Jan;133(1):97–117. doi: 10.1093/genetics/133.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Desjardins P., Morais R. Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. J Mol Biol. 1990 Apr 20;212(4):599–634. doi: 10.1016/0022-2836(90)90225-B. [DOI] [PubMed] [Google Scholar]
  12. Gavrilets S., de Jong G. Pleiotropic models of polygenic variation, stabilizing selection, and epistasis. Genetics. 1993 Jun;134(2):609–625. doi: 10.1093/genetics/134.2.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Haymer D. S., Hartl D. L. The Experimental Assessment of Fitness in Drosophila. II. a Comparison of Competitive and Noncompetitive Measures. Genetics. 1983 Jun;104(2):343–352. doi: 10.1093/genetics/104.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hoelzel A. R. Evolution by DNA turnover in the control region of vertebrate mitochondrial DNA. Curr Opin Genet Dev. 1993 Dec;3(6):891–895. doi: 10.1016/0959-437x(93)90010-m. [DOI] [PubMed] [Google Scholar]
  15. Hoffmann R. J., Boore J. L., Brown W. M. A novel mitochondrial genome organization for the blue mussel, Mytilus edulis. Genetics. 1992 Jun;131(2):397–412. doi: 10.1093/genetics/131.2.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jacobs H. T., Elliott D. J., Math V. B., Farquharson A. Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J Mol Biol. 1988 Jul 20;202(2):185–217. doi: 10.1016/0022-2836(88)90452-4. [DOI] [PubMed] [Google Scholar]
  17. Janke A., Feldmaier-Fuchs G., Thomas W. K., von Haeseler A., Päbo S. The marsupial mitochondrial genome and the evolution of placental mammals. Genetics. 1994 May;137(1):243–256. doi: 10.1093/genetics/137.1.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kearsey M. U., Barnes B. W. Variation for metrical characters in Drosophila populations. II. Natural selection. Heredity (Edinb) 1970 Feb;25(1):11–21. doi: 10.1038/hdy.1970.2. [DOI] [PubMed] [Google Scholar]
  19. Knight G R, Robertson A. Fitness as a Measurable Character in Drosophila. Genetics. 1957 Jul;42(4):524–530. doi: 10.1093/genetics/42.4.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kondrashov A. S., Turelli M. Deleterious mutations, apparent stabilizing selection and the maintenance of quantitative variation. Genetics. 1992 Oct;132(2):603–618. doi: 10.1093/genetics/132.2.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lansman R. A., Shade R. O., Shapira J. F., Avise J. C. The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. III. Techniques and potential applications. J Mol Evol. 1981;17(4):214–226. doi: 10.1007/BF01732759. [DOI] [PubMed] [Google Scholar]
  22. Levinson G., Gutman G. A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol. 1987 May;4(3):203–221. doi: 10.1093/oxfordjournals.molbev.a040442. [DOI] [PubMed] [Google Scholar]
  23. Linney R., Barnes B. W., Kearsey M. J. Variation for metrical characters in drosophila populations. 3. The nature of selection. Heredity (Edinb) 1971 Oct;27(2):163–174. doi: 10.1038/hdy.1971.82. [DOI] [PubMed] [Google Scholar]
  24. López M. A., López-Fanjul C. Spontaneous mutation for a quantitative trait in Drosophila melanogaster. II. Distribution of mutant effects on the trait and fitness. Genet Res. 1993 Apr;61(2):117–126. doi: 10.1017/s0016672300031220. [DOI] [PubMed] [Google Scholar]
  25. Mackay T. F., Fry J. D., Lyman R. F., Nuzhdin S. V. Polygenic mutation in Drosophila melanogaster: estimates from response to selection of inbred strains. Genetics. 1994 Mar;136(3):937–951. doi: 10.1093/genetics/136.3.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mackay T. F., Lyman R. F., Jackson M. S. Effects of P element insertions on quantitative traits in Drosophila melanogaster. Genetics. 1992 Feb;130(2):315–332. doi: 10.1093/genetics/130.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nuzhdin S. V., Mackay T. F. Direct determination of retrotransposon transposition rates in Drosophila melanogaster. Genet Res. 1994 Apr;63(2):139–144. doi: 10.1017/s0016672300032249. [DOI] [PubMed] [Google Scholar]
  28. Okimoto R., Macfarlane J. L., Clary D. O., Wolstenholme D. R. The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum. Genetics. 1992 Mar;130(3):471–498. doi: 10.1093/genetics/130.3.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Roe B. A., Ma D. P., Wilson R. K., Wong J. F. The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J Biol Chem. 1985 Aug 15;260(17):9759–9774. [PubMed] [Google Scholar]
  30. Roff D. A., Mousseau T. A. Quantitative genetics and fitness: lessons from Drosophila. Heredity (Edinb) 1987 Feb;58(Pt 1):103–118. doi: 10.1038/hdy.1987.15. [DOI] [PubMed] [Google Scholar]
  31. Santiago E., Albornoz J., Domínguez A., Toro M. A., López-Fanjul C. The distribution of spontaneous mutations on quantitative traits and fitness in Drosophila melanogaster. Genetics. 1992 Nov;132(3):771–781. doi: 10.1093/genetics/132.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sidow A., Thomas W. K. A molecular evolutionary framework for eukaryotic model organisms. Curr Biol. 1994 Jul 1;4(7):596–603. doi: 10.1016/s0960-9822(00)00131-7. [DOI] [PubMed] [Google Scholar]
  33. Smith M. J., Arndt A., Gorski S., Fajber E. The phylogeny of echinoderm classes based on mitochondrial gene arrangements. J Mol Evol. 1993 Jun;36(6):545–554. doi: 10.1007/BF00556359. [DOI] [PubMed] [Google Scholar]
  34. Stock D. W., Whitt G. S. Evidence from 18S ribosomal RNA sequences that lampreys and hagfishes form a natural group. Science. 1992 Aug 7;257(5071):787–789. doi: 10.1126/science.1496398. [DOI] [PubMed] [Google Scholar]
  35. Sved J. A. An estimate of heterosis in Drosophila melanogaster. Genet Res. 1971 Aug;18(1):97–105. doi: 10.1017/s0016672300012453. [DOI] [PubMed] [Google Scholar]
  36. Sved J. A. Fitness of third chromosome homozygotes in Drosophila melanogaster. Genet Res. 1975 Apr;25(2):197–200. doi: 10.1017/s0016672300015603. [DOI] [PubMed] [Google Scholar]
  37. Turelli M. Heritable genetic variation via mutation-selection balance: Lerch's zeta meets the abdominal bristle. Theor Popul Biol. 1984 Apr;25(2):138–193. doi: 10.1016/0040-5809(84)90017-0. [DOI] [PubMed] [Google Scholar]
  38. Tzeng C. S., Hui C. F., Shen S. C., Huang P. C. The complete nucleotide sequence of the Crossostoma lacustre mitochondrial genome: conservation and variations among vertebrates. Nucleic Acids Res. 1992 Sep 25;20(18):4853–4858. doi: 10.1093/nar/20.18.4853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Walberg M. W., Clayton D. A. Sequence and properties of the human KB cell and mouse L cell D-loop regions of mitochondrial DNA. Nucleic Acids Res. 1981 Oct 24;9(20):5411–5421. doi: 10.1093/nar/9.20.5411. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES