Skip to main content
Genetics logoLink to Genetics
. 1995 Feb;139(2):907–920. doi: 10.1093/genetics/139.2.907

Mapping Quantitative Trait Loci Controlling Milk Production in Dairy Cattle by Exploiting Progeny Testing

M Georges 1, D Nielsen 1, M Mackinnon 1, A Mishra 1, R Okimoto 1, A T Pasquino 1, L S Sargeant 1, A Sorensen 1, M R Steele 1, X Zhao 1, J E Womack 1, I Hoeschele 1
PMCID: PMC1206390  PMID: 7713441

Abstract

We have exploited ``progeny testing'' to map quantitative trait loci (QTL) underlying the genetic variation of milk production in a selected dairy cattle population. A total of 1,518 sires, with progeny tests based on the milking performances of > 150,000 daughters jointly, was genotyped for 159 autosomal microsatellites bracketing 1645 centimorgan or approximately two thirds of the bovine genome. Using a maximum likelihood multilocus linkage analysis accounting for variance heterogeneity of the phenotypes, we identified five chromosomes giving very strong evidence (LOD score >/= 3) for the presence of a QTL controlling milk production: chromosomes 1, 6, 9, 10 and 20. These findings demonstrate that loci with considerable effects on milk production are still segregating in highly selected populations and pave the way toward marker-assisted selection in dairy cattle breeding.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson-Eklund L., Rendel J. Linkage between amylase-1 locus and a major gene for milk fat content in cattle. Anim Genet. 1993 Apr;24(2):101–103. doi: 10.1111/j.1365-2052.1993.tb00248.x. [DOI] [PubMed] [Google Scholar]
  2. Barendse W., Armitage S. M., Kossarek L. M., Shalom A., Kirkpatrick B. W., Ryan A. M., Clayton D., Li L., Neibergs H. L., Zhang N. A genetic linkage map of the bovine genome. Nat Genet. 1994 Mar;6(3):227–235. doi: 10.1038/ng0394-227. [DOI] [PubMed] [Google Scholar]
  3. Bishop M. D., Kappes S. M., Keele J. W., Stone R. T., Sunden S. L., Hawkins G. A., Toldo S. S., Fries R., Grosz M. D., Yoo J. A genetic linkage map for cattle. Genetics. 1994 Feb;136(2):619–639. doi: 10.1093/genetics/136.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bovenhuis H., Weller J. I. Mapping and analysis of dairy cattle quantitative trait loci by maximum likelihood methodology using milk protein genes as genetic markers. Genetics. 1994 May;137(1):267–280. doi: 10.1093/genetics/137.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dietz A. B., Georges M., Threadgill D. W., Womack J. E., Schuler L. A. Somatic cell mapping, polymorphism, and linkage analysis of bovine prolactin-related proteins and placental lactogen. Genomics. 1992 Sep;14(1):137–143. doi: 10.1016/s0888-7543(05)80296-4. [DOI] [PubMed] [Google Scholar]
  6. Fries R., Eggen A., Stranzinger G. The bovine genome contains polymorphic microsatellites. Genomics. 1990 Oct;8(2):403–406. doi: 10.1016/0888-7543(90)90301-a. [DOI] [PubMed] [Google Scholar]
  7. Georges M., Dietz A. B., Mishra A., Nielsen D., Sargeant L. S., Sorensen A., Steele M. R., Zhao X., Leipold H., Womack J. E. Microsatellite mapping of the gene causing weaver disease in cattle will allow the study of an associated quantitative trait locus. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1058–1062. doi: 10.1073/pnas.90.3.1058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guo S. W., Thompson E. A. A Monte Carlo method for combined segregation and linkage analysis. Am J Hum Genet. 1992 Nov;51(5):1111–1126. [PMC free article] [PubMed] [Google Scholar]
  9. Hilbert P., Lindpaintner K., Beckmann J. S., Serikawa T., Soubrier F., Dubay C., Cartwright P., De Gouyon B., Julier C., Takahasi S. Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature. 1991 Oct 10;353(6344):521–529. doi: 10.1038/353521a0. [DOI] [PubMed] [Google Scholar]
  10. Hoeschele I., Meinert T. R. Association of genetic defects with yield and type traits: the weaver locus effect on yield. J Dairy Sci. 1990 Sep;73(9):2503–2515. doi: 10.3168/jds.S0022-0302(90)78936-9. [DOI] [PubMed] [Google Scholar]
  11. Knott S. A., Haley C. S. Maximum likelihood mapping of quantitative trait loci using full-sib families. Genetics. 1992 Dec;132(4):1211–1222. doi: 10.1093/genetics/132.4.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kuhl D. P., Caskey C. T. Trinucleotide repeats and genome variation. Curr Opin Genet Dev. 1993 Jun;3(3):404–407. doi: 10.1016/0959-437x(93)90112-3. [DOI] [PubMed] [Google Scholar]
  13. Logue D. N., Harvey M. J. Meiosis and spermatogenesis in bulls heterozygous for a presumptive 1/29 Robertsonian translocation. J Reprod Fertil. 1978 Sep;54(1):159–165. doi: 10.1530/jrf.0.0540159. [DOI] [PubMed] [Google Scholar]
  14. Mackinnon M. J., Georges M. A. The effects of selection on linkage analysis for quantitative traits. Genetics. 1992 Dec;132(4):1177–1185. doi: 10.1093/genetics/132.4.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Paterson A. H., Lander E. S., Hewitt J. D., Peterson S., Lincoln S. E., Tanksley S. D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature. 1988 Oct 20;335(6192):721–726. doi: 10.1038/335721a0. [DOI] [PubMed] [Google Scholar]
  16. VanRaden P. M., Wiggans G. R. Derivation, calculation, and use of national animal model information. J Dairy Sci. 1991 Aug;74(8):2737–2746. doi: 10.3168/jds.S0022-0302(91)78453-1. [DOI] [PubMed] [Google Scholar]
  17. Weber J. L., May P. E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet. 1989 Mar;44(3):388–396. [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES