Skip to main content
Genetics logoLink to Genetics
. 1995 Feb;139(2):963–973. doi: 10.1093/genetics/139.2.963

Molecular Genetics of Growth and Development in Populus. IV. Mapping Qtls with Large Effects on Growth, Form, and Phenology Traits in a Forest Tree

H D Bradshaw-Jr 1, R F Stettler 1
PMCID: PMC1206394  PMID: 7713445

Abstract

We have mapped quantitative trait loci (QTLs) for commercially important traits (stem growth and form) and an adaptive trait (spring leaf flush) in a Populus F(2) generation derived from a cross between interspecific F(1) hybrids (P. trichocarpa X P. deltoides). Phenotypic data were collected over a 2-year period from a replicated clonal trial containing ramets of the parental, F(1), and F(2) trees. Contrary to the assumptions of simple polygenic models of quantitative trait inheritance, 1-5 QTLs of large effect are responsible for a large portion of the genetic variance in each of the traits measured. For example, 44.7% of the genetic variance in stem volume after 2 years of growth is controlled by just two QTLs. QTLs governing stem basal area were found clustered with QTLs for sylleptic branch leaf area, sharing similar chromosomal position and mode of action and suggesting a pleiotropic effect of QTLs ultimately responsible for stem diameter growth.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abelson P. H. Improved yields of biomass. Science. 1991 Jun 14;252(5012):1469–1469. doi: 10.1126/science.252.5012.1469. [DOI] [PubMed] [Google Scholar]
  2. Keim P., Diers B. W., Olson T. C., Shoemaker R. C. RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics. 1990 Nov;126(3):735–742. doi: 10.1093/genetics/126.3.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Paterson A. H., Damon S., Hewitt J. D., Zamir D., Rabinowitch H. D., Lincoln S. E., Lander E. S., Tanksley S. D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics. 1991 Jan;127(1):181–197. doi: 10.1093/genetics/127.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Paterson A. H., Lander E. S., Hewitt J. D., Peterson S., Lincoln S. E., Tanksley S. D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature. 1988 Oct 20;335(6192):721–726. doi: 10.1038/335721a0. [DOI] [PubMed] [Google Scholar]
  6. Stuber C. W., Lincoln S. E., Wolff D. W., Helentjaris T., Lander E. S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics. 1992 Nov;132(3):823–839. doi: 10.1093/genetics/132.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES