Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1965 Jan;94(1):209–215. doi: 10.1042/bj0940209

Citrate and the conversion of carbohydrate in fat. The activities of citrate-cleavage enzyme and acetate thiokinase in livers of starved and re-fed rats

Melodee S Kornacker 1, J M Lowenstein 1
PMCID: PMC1206429  PMID: 14342232

Abstract

1. The activity of citrate-cleavage enzyme varies in accordance with the nutritional state of the animal. It is suppressed on starvation and restored on re-feeding after starvation. 2. The increase in enzyme activity that occurs on re-feeding starved animals depends on the diet. It is largest on diets high in carbohydrate and low in fat, and smallest on diets high in fat. Intermediate increases are obtained with balanced diets. 3. The ratio of activities of citrate-cleavage enzyme to acetate thiokinase varies from 2·5 for animals maintained on a balanced diet to 20 for animals re-fed with a diet high in carbohydrate. 4. The changes in activity of citrate-cleavage enzyme correlate with changes in the rate of fatty acid synthesis and provide evidence for the involvement of the citrate-cleavage reaction in fatty acid synthesis.

Full text

PDF
209

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABRAHAM S., MATTHES K. J., CHAIKOFF I. L. THE ROLE OF MICROSOMES IN FATTY ACID SYNTHESIS FROM ACETATE BY CELL-FREE PREPARATIONS OF RAT LIVER AND MAMMARY GLAND. Biochim Biophys Acta. 1963 Aug 27;70:357–369. doi: 10.1016/0006-3002(63)90765-0. [DOI] [PubMed] [Google Scholar]
  2. BAKER N., CHAIKOFF I. L., SCHUSDEK A. Effect of fructose on lipogenesis from lactate and acetate in diabetic liver. J Biol Chem. 1952 Jan;194(1):435–443. [PubMed] [Google Scholar]
  3. BARTELS H., HOHORST H. J. [On the effect of ethionine on the metabolite status of the rat liver]. Biochim Biophys Acta. 1963 Apr 2;71:214–216. doi: 10.1016/0006-3002(63)91011-4. [DOI] [PubMed] [Google Scholar]
  4. BHADURI A., SRERE P. A. The incorporation of citrate carbon into fatty acids. Biochim Biophys Acta. 1963 Jun 18;70:221–230. doi: 10.1016/0006-3002(63)90747-9. [DOI] [PubMed] [Google Scholar]
  5. BRADY R. O., MAMOON A. M., STADTMAN E. R. The effects of citrate and coenzyme A on fatty acid metabolism. J Biol Chem. 1956 Oct;222(2):795–802. [PubMed] [Google Scholar]
  6. BREMER J. Carnitine in intermediary metabolism. Reversible acetylation of carnitine by mitochondria. J Biol Chem. 1962 Jul;237:2228–2231. [PubMed] [Google Scholar]
  7. BREMER J. Carnitine in intermediary metabolism. The metabolism of fatty acid esters of carnitine by mitochondria. J Biol Chem. 1962 Dec;237:3628–3632. [PubMed] [Google Scholar]
  8. COCKBURN R. M., VAN BRUGGEN J. T. Acetate metabolism in vivo; effect of refeeding. J Biol Chem. 1959 Feb;234(2):431–434. [PubMed] [Google Scholar]
  9. DILS R., POPJAK G. Biosynthesis of fatty acids in cell-free preparations. 5. Synthesis of fatty acids from acetate in extracts of lactating-rat mammary gland. Biochem J. 1962 Apr;83:41–51. doi: 10.1042/bj0830041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. EMERSON R. J., BERNARDS W. C., VAN BRUGGEN J. T. Acetate metabolism in vitro; effect of refeeding. J Biol Chem. 1959 Feb;234(2):435–437. [PubMed] [Google Scholar]
  11. FORMICA J. V. Utilization of citric acid carbon for the biosynthesis of long-chain fatty acids. Biochim Biophys Acta. 1962 Jun 4;59:739–741. doi: 10.1016/0006-3002(62)90665-0. [DOI] [PubMed] [Google Scholar]
  12. FRITZ I. B. CARNITINE AND ITS ROLE IN FATTY ACID METABOLISM. Adv Lipid Res. 1963;1:285–334. [PubMed] [Google Scholar]
  13. FRITZ I. B. Factors influencing the rates of long-chain fatty acid oxidation and synthesis in mammalian systems. Physiol Rev. 1961 Jan;41:52–129. doi: 10.1152/physrev.1961.41.1.52. [DOI] [PubMed] [Google Scholar]
  14. FRITZ I. B., SCHULTZ S. K., SRERE P. A. Properties of partially purified carnitine acetyltransferase. J Biol Chem. 1963 Jul;238:2509–2517. [PubMed] [Google Scholar]
  15. FRITZ I. B., YUE K. T. EFFECTS OF CARNITINE ON ACETYL-COA OXIDATION BY HEART MUSCLE MITOCHONDRIA. Am J Physiol. 1964 Mar;206:531–535. doi: 10.1152/ajplegacy.1964.206.3.531. [DOI] [PubMed] [Google Scholar]
  16. GIBSON D. M., HUBBARD D. D. Incorporation of malonyl CoA into fatty acids by liver in starvation and alloxan-diabetes. Biochem Biophys Res Commun. 1960 Nov;3:531–535. doi: 10.1016/0006-291x(60)90169-8. [DOI] [PubMed] [Google Scholar]
  17. HARLAN W. R., Jr, WAKIL S. J. SYNTHESIS OF FATTY ACIDS IN ANIMAL TISSUES. I. INCORPORATION OF C14-ACETYL COENZYME A INTO A VARIETY OF LONG CHAIN FATTY ACIDS BY SUBCELLULAR PARTICLES. J Biol Chem. 1963 Oct;238:3216–3223. [PubMed] [Google Scholar]
  18. HAUSBERGER F. X., MILSTEIN S. W. Dietary effect on lipogenesis in adipose tissue. J Biol Chem. 1955 May;214(1):483–488. [PubMed] [Google Scholar]
  19. HUTCHENS T. T., VAN BRUGGEN J. T., COCKBURN R. M., WEST E. S. The effect of fasting upon tissue lipogenesis in the intact rat. J Biol Chem. 1954 May;208(1):115–122. [PubMed] [Google Scholar]
  20. KORCHAK H. M., MASORO E. J. Changes in the level of the fatty acid synthesizing enzymes during starvation. Biochim Biophys Acta. 1962 Apr 9;58:354–356. doi: 10.1016/0006-3002(62)91022-3. [DOI] [PubMed] [Google Scholar]
  21. LANGDON R. G. The biosynthesis of fatty acids in rat liver. J Biol Chem. 1957 Jun;226(2):615–629. [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. MASORO E. J., CHAIKOFF I. L., CHERNICK S. S., FELTS J. M. Previous nutritional state and glucose conversion to fatty acids in liver slices. J Biol Chem. 1950 Aug;185(2):845–856. [PubMed] [Google Scholar]
  24. MASORO E. J., KORCHAK H. M., PORTER E. A study of the lipogenic inhibitory mechanisms induced by fasting. Biochim Biophys Acta. 1962 Apr 23;58:407–416. doi: 10.1016/0006-3002(62)90051-3. [DOI] [PubMed] [Google Scholar]
  25. MASORO E. J., PORTER E. The failure in lipogenesis induced by fasting: a new view. Biochim Biophys Acta. 1960 Dec 18;45:620–621. doi: 10.1016/0006-3002(60)91510-9. [DOI] [PubMed] [Google Scholar]
  26. MATTHES K. J., ABRAHAM S., CHAIKOFF I. L. Fatty acid synthesis from acetate by normal and diabetic rat liver homogenate fractions. II. Effect of microsomes and oxidation of substrates. J Biol Chem. 1960 Sep;235:2560–2568. [PubMed] [Google Scholar]
  27. MEDES G., THOMAS A., WEINHOUSE S. Nutritional factors in fatty acid synthesis by tissue slices in vitro. J Biol Chem. 1952 May;197(1):181–191. [PubMed] [Google Scholar]
  28. MILLER J. P., COOPER J. A., FREEMAN S. Lipogenesis by adipose tissue, dietary effects. Proc Soc Exp Biol Med. 1957 Aug-Sep;95(4):817–819. doi: 10.3181/00379727-95-23373. [DOI] [PubMed] [Google Scholar]
  29. NUMA S., MATSUHASHI M., LYNEN F. [On disorders of fatty acid synthesis in hunger and alloxan diabetes. I. Fatty acid synthesis in the liver of normal and fasting rats]. Biochem Z. 1961;334:203–217. [PubMed] [Google Scholar]
  30. POPJAK G., TIETZ A. Biosynthesis of fatty acids in cell-free preparations. 2. Synthesis of fatty acids from acetate by a soluble enzyme system prepared from rat mammary gland. Biochem J. 1955 May;60(1):147–155. doi: 10.1042/bj0600147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Robinson D. S., Harris P. M. Ethionine administration in the rat. 2. Effects on the incorporation of [P]orthophosphate and dl-[1-C]leucine into the phosphatides and proteins of liver and plasma. Biochem J. 1961 Aug;80(2):361–369. doi: 10.1042/bj0800361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. SPENCER A. F., LOWENSTEIN J. M. The supply of precursors for the synthesis of fatty acids. J Biol Chem. 1962 Dec;237:3640–3648. [PubMed] [Google Scholar]
  33. SRERE P. A., BHADURI A. Incorporation of radioactive citrate into fatty acids. Biochim Biophys Acta. 1962 May 21;59:487–489. doi: 10.1016/0006-3002(62)90205-6. [DOI] [PubMed] [Google Scholar]
  34. SRERE P. A. The citrate cleavage enzyme. I. Distribution and purification. J Biol Chem. 1959 Oct;234:2544–2547. [PubMed] [Google Scholar]
  35. Spencer A., Corman L., Lowenstein J. M. Citrate and the conversion of carbohydrate into fat. A comparison of citrate and acetate incorporation into fatty acids. Biochem J. 1964 Nov;93(2):378–388. doi: 10.1042/bj0930378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. TEPPERMAN H. M., TEPPERMAN J. The hexosemonophosphate shunt and adaptive hyperlipogenesis. Diabetes. 1958 Nov-Dec;7(6):478–485. doi: 10.2337/diab.7.6.478. [DOI] [PubMed] [Google Scholar]
  37. TEPPERMAN J., TEPPERMAN H. M. Effects of antecedent food intake pattern on hepatic lipogenesis. Am J Physiol. 1958 Apr;193(1):55–64. doi: 10.1152/ajplegacy.1958.193.1.55. [DOI] [PubMed] [Google Scholar]
  38. TEPPERMAN J., TEPPERMAN H. M. Metabolism of glucose-1-C-14 and glucose-6-C-14 by liver slices of refed rats. Am J Physiol. 1961 May;200:1069–1073. doi: 10.1152/ajplegacy.1961.200.5.1069. [DOI] [PubMed] [Google Scholar]
  39. WEBER G., BANERJEE G., BRONSTEIN S. B. Selective induction and suppression of liver enzyme synthesis. Am J Physiol. 1962 Jan;202:137–144. doi: 10.1152/ajplegacy.1962.202.1.137. [DOI] [PubMed] [Google Scholar]
  40. WEBER G., MACDONALD H. Role of enzymes in metabolic homeostasis. I. Depletion and restoration of liver enzymes involved in glycolysis, glucogenesis and hexosemonophosphate shunt in normal and hypophysectomized rats. Exp Cell Res. 1961 Jan;22:292–302. doi: 10.1016/0014-4827(61)90108-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES