Skip to main content
Genetics logoLink to Genetics
. 1995 Mar;139(3):1201–1209. doi: 10.1093/genetics/139.3.1201

A Test of a Counting Model for Chiasma Interference

E J Foss 1, F W Stahl 1
PMCID: PMC1206450  PMID: 7768433

Abstract

According to the model of FOSS, LANDE, STAHL and STEINBERG, chiasma interference is a reflection of the requirement for crossovers to be separated by an organism-specific number of potential conversion events without associated crossovers. This model predicts that tetrads with close double crossovers should be enriched for conversion events that themselves are not associated with crossing over. We tested this prediction in Saccharomyces cerevisiae and found it to be unfulfilled.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes D. A., Thorner J. Genetic manipulation of Saccharomyces cerevisiae by use of the LYS2 gene. Mol Cell Biol. 1986 Aug;6(8):2828–2838. doi: 10.1128/mcb.6.8.2828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cobbs G. Renewal process approach to the theory of genetic linkage: case of no chromatid interference. Genetics. 1978 Jul;89(3):563–581. doi: 10.1093/genetics/89.3.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fogel S., Mortimer R., Lusnak K., Tavares F. Meiotic gene conversion: a signal of the basic recombination event in yeast. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):1325–1341. doi: 10.1101/sqb.1979.043.01.152. [DOI] [PubMed] [Google Scholar]
  4. Foss E., Lande R., Stahl F. W., Steinberg C. M. Chiasma interference as a function of genetic distance. Genetics. 1993 Mar;133(3):681–691. doi: 10.1093/genetics/133.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Foss E., Lande R., Stahl F. W., Steinberg C. M. Chiasma interference as a function of genetic distance. Genetics. 1993 Mar;133(3):681–691. doi: 10.1093/genetics/133.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fox D. P. The control of chiasma distribution in the locust, Schistocerca gregaria (Forskal). Chromosoma. 1973 Aug 27;43(3):289–328. doi: 10.1007/BF00294277. [DOI] [PubMed] [Google Scholar]
  7. Hilliker A. J., Clark S. H., Chovnick A. The effect of DNA sequence polymorphisms on intragenic recombination in the rosy locus of Drosophila melanogaster. Genetics. 1991 Nov;129(3):779–781. doi: 10.1093/genetics/129.3.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Holliday R. Recombination and meiosis. Philos Trans R Soc Lond B Biol Sci. 1977 Mar 21;277(955):359–370. doi: 10.1098/rstb.1977.0024. [DOI] [PubMed] [Google Scholar]
  9. Jones J. S., Prakash L. Yeast Saccharomyces cerevisiae selectable markers in pUC18 polylinkers. Yeast. 1990 Sep-Oct;6(5):363–366. doi: 10.1002/yea.320060502. [DOI] [PubMed] [Google Scholar]
  10. King J. S., Mortimer R. K. A polymerization model of chiasma interference and corresponding computer simulation. Genetics. 1990 Dec;126(4):1127–1138. doi: 10.1093/genetics/126.4.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Levinson A., Silver D., Seed B. Minimal size plasmids containing an M13 origin for production of single-strand transducing particles. J Mol Appl Genet. 1984;2(6):507–517. [PubMed] [Google Scholar]
  12. Miyajima I., Nakafuku M., Nakayama N., Brenner C., Miyajima A., Kaibuchi K., Arai K., Kaziro Y., Matsumoto K. GPA1, a haploid-specific essential gene, encodes a yeast homolog of mammalian G protein which may be involved in mating factor signal transduction. Cell. 1987 Sep 25;50(7):1011–1019. doi: 10.1016/0092-8674(87)90167-x. [DOI] [PubMed] [Google Scholar]
  13. Muller H J, Jacobs-Muller J M. The Standard Errors of Chromosome Distances and Coincidence. Genetics. 1925 Nov;10(6):509–524. doi: 10.1093/genetics/10.6.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. PERKINS D. D. Crossing-over and interference in a multiply marked chromosome arm of Neurospora. Genetics. 1962 Sep;47:1253–1274. doi: 10.1093/genetics/47.9.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Perkins D. D. Biochemical Mutants in the Smut Fungus Ustilago Maydis. Genetics. 1949 Sep;34(5):607–626. doi: 10.1093/genetics/34.5.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Peterson D. G., Stack S. M., Healy J. L., Donohoe B. S., Anderson L. K. The relationship between synaptonemal complex length and genome size in four vertebrate classes (Osteicthyes, Reptilia, Aves, Mammalia). Chromosome Res. 1994 Mar;2(2):153–162. doi: 10.1007/BF01553494. [DOI] [PubMed] [Google Scholar]
  17. Sherman F., Wakem P. Mapping yeast genes. Methods Enzymol. 1991;194:38–57. doi: 10.1016/0076-6879(91)94006-x. [DOI] [PubMed] [Google Scholar]
  18. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stadler D. R. THE RELATIONSHIP OF GENE CONVERSION TO CROSSING OVER IN NEUROSPORA. Proc Natl Acad Sci U S A. 1959 Nov;45(11):1625–1629. doi: 10.1073/pnas.45.11.1625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stadler D. R. The mechanism of intragenic recombination. Annu Rev Genet. 1973;7:113–127. doi: 10.1146/annurev.ge.07.120173.000553. [DOI] [PubMed] [Google Scholar]
  21. Stam P. Interference in Genetic Crossing over and Chromosome Mapping. Genetics. 1979 Jun;92(2):573–594. doi: 10.1093/genetics/92.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stotz A., Linder P. The ADE2 gene from Saccharomyces cerevisiae: sequence and new vectors. Gene. 1990 Oct 30;95(1):91–98. doi: 10.1016/0378-1119(90)90418-q. [DOI] [PubMed] [Google Scholar]
  23. Tsang T., Copeland V., Bowden G. T. A set of cassette cloning vectors for rapid and versatile adaptation of restriction fragments. Biotechniques. 1991 Mar;10(3):330–330. [PubMed] [Google Scholar]
  24. WEINSTEIN A. The geometry and mechanics of crossing over. Cold Spring Harb Symp Quant Biol. 1958;23:177–196. doi: 10.1101/sqb.1958.023.01.022. [DOI] [PubMed] [Google Scholar]
  25. Wang H. T., Frackman S., Kowalisyn J., Esposito R. E., Elder R. Developmental regulation of SPO13, a gene required for separation of homologous chromosomes at meiosis I. Mol Cell Biol. 1987 Apr;7(4):1425–1435. doi: 10.1128/mcb.7.4.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zhao H., Speed T. P., McPeek M. S. Statistical analysis of crossover interference using the chi-square model. Genetics. 1995 Feb;139(2):1045–1056. doi: 10.1093/genetics/139.2.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES