Skip to main content
Genetics logoLink to Genetics
. 1995 Mar;139(3):1233–1246. doi: 10.1093/genetics/139.3.1233

Meiotic Instability of Pythium Sylvaticum as Demonstrated by Inheritance of Nuclear Markers and Karyotype Analysis

F Martin 1
PMCID: PMC1206453  PMID: 7768436

Abstract

Progeny from a sexual outcross between opposite mating types of Pythium sylvaticum were analyzed for inheritance of RFLP and random amplified polymorphic DNA (RAPD) markers. Although most were inherited in expected Mendelian frequencies, several were not. Pulsed field gel electrophoresis was employed to examine these unexpected patterns of marker inheritance at a karyotypic level. Parental oogonial and antheridial isolates had different electrophoretic karyotypes and minimum number of chromosome-sized DNAs (13 and 12, respectively), however, summation of the sizes of all chromosomal bands for each isolate was similar at ~37 Mb. Progeny karyotypes differed significantly from each other and the parental isolates, ranging in estimated minimum number of chromosome-sized DNAs from 9 to 13 and the summation of band sizes within each isolate from 28.1 to 39.0 Mb. For the eight isolates most extensively analyzed, 80% of the progeny chromosome-sized DNAs were nonparental in size or hybridization grouping of cDNA clones and isolated RAPD markers. Based on the results of Southern analysis it appears that length mutations and perhaps aneuploidy and translocations have contributed to generation of karyotypic polymorphisms. Nineteen field isolates of P. sylvaticum collected from the same location also exhibited significantly different karyotypes, suggesting that the meiotic instability observed in the laboratory also is occurring in field populations.

Full Text

The Full Text of this article is available as a PDF (4.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam R. D. Chromosome-size variation in Giardia lamblia: the role of rDNA repeats. Nucleic Acids Res. 1992 Jun 25;20(12):3057–3061. doi: 10.1093/nar/20.12.3057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baldauf S. L., Palmer J. D. Animals and fungi are each other's closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11558–11562. doi: 10.1073/pnas.90.24.11558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Butler D. K., Metzenberg R. L. Amplification of the nucleolus organizer region during the sexual phase of Neurospora crassa. Chromosoma. 1993 Sep;102(8):519–525. doi: 10.1007/BF00368345. [DOI] [PubMed] [Google Scholar]
  4. Butler D. K., Metzenberg R. L. Premeiotic change of nucleolus organizer size in Neurospora. Genetics. 1989 Aug;122(4):783–791. doi: 10.1093/genetics/122.4.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Butler D. K. Ribosomal DNA is a site of chromosome breakage in aneuploid strains of Neurospora. Genetics. 1992 Jul;131(3):581–592. doi: 10.1093/genetics/131.3.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Corcoran L. M., Thompson J. K., Walliker D., Kemp D. J. Homologous recombination within subtelomeric repeat sequences generates chromosome size polymorphisms in P. falciparum. Cell. 1988 Jun 3;53(5):807–813. doi: 10.1016/0092-8674(88)90097-9. [DOI] [PubMed] [Google Scholar]
  8. Cutler J. E., Glee P. M., Horn H. L. Candida albicans- and Candida stellatoidea-specific DNA fragment. J Clin Microbiol. 1988 Sep;26(9):1720–1724. doi: 10.1128/jcm.26.9.1720-1724.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. De Cock A. W., Mendoza L., Padhye A. A., Ajello L., Kaufman L. Pythium insidiosum sp. nov., the etiologic agent of pythiosis. J Clin Microbiol. 1987 Feb;25(2):344–349. doi: 10.1128/jcm.25.2.344-349.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Francis D. M., St Clair D. A. Outcrossing in the homothallic oomycete, Pythium ultimum, detected with molecular markers. Curr Genet. 1993 Jul-Aug;24(1-2):100–106. doi: 10.1007/BF00324672. [DOI] [PubMed] [Google Scholar]
  11. Gandhi S. R., Weete J. D. Production of the polyunsaturated fatty acids arachidonic acid and eicosapentaenoic acid by the fungus Pythium ultimum. J Gen Microbiol. 1991 Aug;137(8):1825–1830. doi: 10.1099/00221287-137-8-1825. [DOI] [PubMed] [Google Scholar]
  12. Goodwin S. B., Drenth A., Fry W. E. Cloning and genetic analyses of two highly polymorphic, moderately repetitive nuclear DNAs from Phytophthora infestans. Curr Genet. 1992 Aug;22(2):107–115. doi: 10.1007/BF00351469. [DOI] [PubMed] [Google Scholar]
  13. Gottesdiener K., Garciá-Anoveros J., Lee M. G., Van der Ploeg L. H. Chromosome organization of the protozoan Trypanosoma brucei. Mol Cell Biol. 1990 Nov;10(11):6079–6083. doi: 10.1128/mcb.10.11.6079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hudspeth M. E., Timberlake W. E., Goldberg R. B. DNA sequence organization in the water mold Achlya. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4332–4336. doi: 10.1073/pnas.74.10.4332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hulbert S. H., Ilott T. W., Legg E. J., Lincoln S. E., Lander E. S., Michelmore R. W. Genetic analysis of the fungus, Bremia lactucae, using restriction fragment length polymorphisms. Genetics. 1988 Dec;120(4):947–958. doi: 10.1093/genetics/120.4.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Iwaguchi S., Homma M., Chibana H., Tanaka K. Isolation and characterization of a repeated sequence (RPS1) of Candida albicans. J Gen Microbiol. 1992 Sep;138(9):1893–1900. doi: 10.1099/00221287-138-9-1893. [DOI] [PubMed] [Google Scholar]
  17. Iwaguchi S., Homma M., Tanaka K. Variation in the electrophoretic karyotype analysed by the assignment of DNA probes in Candida albicans. J Gen Microbiol. 1990 Dec;136(12):2433–2442. doi: 10.1099/00221287-136-12-2433. [DOI] [PubMed] [Google Scholar]
  18. Kinscherf T. G., Leong S. A. Molecular analysis of the karyotype of Ustilago maydis. Chromosoma. 1988;96(6):427–433. doi: 10.1007/BF00303036. [DOI] [PubMed] [Google Scholar]
  19. Knoll A. H. The early evolution of eukaryotes: a geological perspective. Science. 1992 May 1;256(5057):622–627. doi: 10.1126/science.1585174. [DOI] [PubMed] [Google Scholar]
  20. Lasker B. A., Page L. S., Lott T. J., Kobayashi G. S., Medoff G. Characterization of CARE-1: Candida albicans repetitive element-1. Gene. 1991 Jun 15;102(1):45–50. doi: 10.1016/0378-1119(91)90536-k. [DOI] [PubMed] [Google Scholar]
  21. Magee B. B., Koltin Y., Gorman J. A., Magee P. T. Assignment of cloned genes to the seven electrophoretically separated Candida albicans chromosomes. Mol Cell Biol. 1988 Nov;8(11):4721–4726. doi: 10.1128/mcb.8.11.4721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Maleszka R., Clark-Walker G. D. A petite positive strain of Kluyveromyces lactis has a 300 kb deletion in the rDNA cluster. Curr Genet. 1989 Dec;16(5-6):429–432. doi: 10.1007/BF00340722. [DOI] [PubMed] [Google Scholar]
  23. Maleszka R., Clark-Walker G. D. Yeasts have a four-fold variation in ribosomal DNA copy number. Yeast. 1993 Jan;9(1):53–58. doi: 10.1002/yea.320090107. [DOI] [PubMed] [Google Scholar]
  24. Montgomery E. A., Huang S. M., Langley C. H., Judd B. H. Chromosome rearrangement by ectopic recombination in Drosophila melanogaster: genome structure and evolution. Genetics. 1991 Dec;129(4):1085–1098. doi: 10.1093/genetics/129.4.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Naumova E., Naumov G., Fournier P., Nguyen H. V., Gaillardin C. Chromosomal polymorphism of the yeast Yarrowia lipolytica and related species: electrophoretic karyotyping and hybridization with cloned genes. Curr Genet. 1993 May-Jun;23(5-6):450–454. doi: 10.1007/BF00312633. [DOI] [PubMed] [Google Scholar]
  26. Pasero P., Marilley M. Size variation of rDNA clusters in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Mol Gen Genet. 1993 Jan;236(2-3):448–452. doi: 10.1007/BF00277147. [DOI] [PubMed] [Google Scholar]
  27. Petes T. D. Yeast ribosomal DNA genes are located on chromosome XII. Proc Natl Acad Sci U S A. 1979 Jan;76(1):410–414. doi: 10.1073/pnas.76.1.410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Plummer K. M., Howlett B. J. Major chromosomal length polymorphisms are evident after meiosis in the phytopathogenic fungus Leptosphaeria maculans. Curr Genet. 1993 Jul-Aug;24(1-2):107–113. doi: 10.1007/BF00324673. [DOI] [PubMed] [Google Scholar]
  29. Powell W. A., Kistler H. C. In vivo rearrangement of foreign DNA by Fusarium oxysporum produces linear self-replicating plasmids. J Bacteriol. 1990 Jun;172(6):3163–3171. doi: 10.1128/jb.172.6.3163-3171.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pukkila P. J., Skrzynia C. Frequent changes in the number of reiterated ribosomal RNA genes throughout the life cycle of the basidiomycete Coprinus cinereus. Genetics. 1993 Feb;133(2):203–211. doi: 10.1093/genetics/133.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Russell B. W., Mills D. Electrophoretic karyotypes of Tilletia caries, T. controversa, and their F1 progeny: further evidence for conspecific status. Mol Plant Microbe Interact. 1993 Jan-Feb;6(1):66–74. doi: 10.1094/mpmi-6-066. [DOI] [PubMed] [Google Scholar]
  32. Rustchenko E. P., Curran T. M., Sherman F. Variations in the number of ribosomal DNA units in morphological mutants and normal strains of Candida albicans and in normal strains of Saccharomyces cerevisiae. J Bacteriol. 1993 Nov;175(22):7189–7199. doi: 10.1128/jb.175.22.7189-7199.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sadhu C., McEachern M. J., Rustchenko-Bulgac E. P., Schmid J., Soll D. R., Hicks J. B. Telomeric and dispersed repeat sequences in Candida yeasts and their use in strain identification. J Bacteriol. 1991 Jan;173(2):842–850. doi: 10.1128/jb.173.2.842-850.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Scherer S., Stevens D. A. A Candida albicans dispersed, repeated gene family and its epidemiologic applications. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1452–1456. doi: 10.1073/pnas.85.5.1452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Soll D. R., Langtimm C. J., McDowell J., Hicks J., Galask R. High-frequency switching in Candida strains isolated from vaginitis patients. J Clin Microbiol. 1987 Sep;25(9):1611–1622. doi: 10.1128/jcm.25.9.1611-1622.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Stinson E. E., Kwoczak R., Kurantz M. J. Effect of cultural conditions on production of eicosapentaenoic acid by Pythium irregulare. J Ind Microbiol. 1991 Oct;8(3):171–178. doi: 10.1007/BF01575850. [DOI] [PubMed] [Google Scholar]
  37. Thrash-Bingham C., Gorman J. A. DNA translocations contribute to chromosome length polymorphisms in Candida albicans. Curr Genet. 1992 Aug;22(2):93–100. doi: 10.1007/BF00351467. [DOI] [PubMed] [Google Scholar]
  38. Walliker D., Quakyi I. A., Wellems T. E., McCutchan T. F., Szarfman A., London W. T., Corcoran L. M., Burkot T. R., Carter R. Genetic analysis of the human malaria parasite Plasmodium falciparum. Science. 1987 Jun 26;236(4809):1661–1666. doi: 10.1126/science.3299700. [DOI] [PubMed] [Google Scholar]
  39. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zolan M. E., Crittenden J. R., Heyler N. K., Seitz L. C. Efficient isolation and mapping of rad genes of the fungus Coprinus cinereus using chromosome-specific libraries. Nucleic Acids Res. 1992 Aug 11;20(15):3993–3999. doi: 10.1093/nar/20.15.3993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES