Skip to main content
Genetics logoLink to Genetics
. 1995 Mar;139(3):1247–1259. doi: 10.1093/genetics/139.3.1247

Mutations in the Clk-1 Gene of Caenorhabditis Elegans Affect Developmental and Behavioral Timing

A Wong 1, P Boutis 1, S Hekimi 1
PMCID: PMC1206454  PMID: 7768437

Abstract

We have identified three allelic, maternal-effect mutations that affect developmental and behavioral timing in Caenorhabditis elegans. They result in a mean lengthening of embryonic and postembryonic development, the cell cycle period and life span, as well as the periods of the defecation, swimming and pumping cycles. These mutants also display a number of additional phenotypes related to timing. For example, the variability in the length of embryonic development is several times larger in the mutants than in the wild type, resulting in the occasional production of mutant embryos developing more rapidly than the most rapidly developing wild-type embryos. In addition, the duration of embryonic development of the mutants, but not of the wild type, depends on the temperature at which their parents were raised. Finally, individual variations in the severity of distinct mutant phenotypes are correlated in a counterintuitive way. For example, the animals with the shortest embryonic development have the longest defecation cycle and those with the longest embryonic development have the shortest defecation cycle. Most of the features affected by these mutations are believed to be controlled by biological clocks, and we therefore call the gene defined by these mutations clk-1, for ``abnormal function of biological clocks.''

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambros V. A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell. 1989 Apr 7;57(1):49–57. doi: 10.1016/0092-8674(89)90171-2. [DOI] [PubMed] [Google Scholar]
  2. Ambros V., Horvitz H. R. Heterochronic mutants of the nematode Caenorhabditis elegans. Science. 1984 Oct 26;226(4673):409–416. doi: 10.1126/science.6494891. [DOI] [PubMed] [Google Scholar]
  3. Aronson B. D., Johnson K. A., Loros J. J., Dunlap J. C. Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science. 1994 Mar 18;263(5153):1578–1584. doi: 10.1126/science.8128244. [DOI] [PubMed] [Google Scholar]
  4. Avery L. The genetics of feeding in Caenorhabditis elegans. Genetics. 1993 Apr;133(4):897–917. doi: 10.1093/genetics/133.4.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dunlap J. C. Genetic analysis of circadian clocks. Annu Rev Physiol. 1993;55:683–728. doi: 10.1146/annurev.ph.55.030193.003343. [DOI] [PubMed] [Google Scholar]
  6. Edgar B. A., Kiehle C. P., Schubiger G. Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development. Cell. 1986 Jan 31;44(2):365–372. doi: 10.1016/0092-8674(86)90771-3. [DOI] [PubMed] [Google Scholar]
  7. Edgar L. G., McGhee J. D. DNA synthesis and the control of embryonic gene expression in C. elegans. Cell. 1988 May 20;53(4):589–599. doi: 10.1016/0092-8674(88)90575-2. [DOI] [PubMed] [Google Scholar]
  8. Feldman J. F., Hoyle M. N. Isolation of circadian clock mutants of Neurospora crassa. Genetics. 1973 Dec;75(4):605–613. doi: 10.1093/genetics/75.4.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Friesen W. O., Block G. D., Hocker C. G. Formal approaches to understanding biological oscillators. Annu Rev Physiol. 1993;55:661–681. doi: 10.1146/annurev.ph.55.030193.003305. [DOI] [PubMed] [Google Scholar]
  10. Greenwald I. S., Horvitz H. R. unc-93(e1500): A behavioral mutant of Caenorhabditis elegans that defines a gene with a wild-type null phenotype. Genetics. 1980 Sep;96(1):147–164. doi: 10.1093/genetics/96.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hardin P. E., Hall J. C., Rosbash M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature. 1990 Feb 8;343(6258):536–540. doi: 10.1038/343536a0. [DOI] [PubMed] [Google Scholar]
  12. Hartwell L. H., Weinert T. A. Checkpoints: controls that ensure the order of cell cycle events. Science. 1989 Nov 3;246(4930):629–634. doi: 10.1126/science.2683079. [DOI] [PubMed] [Google Scholar]
  13. Hedgecock E. M., Russell R. L. Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1975 Oct;72(10):4061–4065. doi: 10.1073/pnas.72.10.4061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hess B., Plesser T. Temporal and spatial order in biochemical systems. Ann N Y Acad Sci. 1979;316:203–213. doi: 10.1111/j.1749-6632.1979.tb29470.x. [DOI] [PubMed] [Google Scholar]
  15. Huang Z. J., Edery I., Rosbash M. PAS is a dimerization domain common to Drosophila period and several transcription factors. Nature. 1993 Jul 15;364(6434):259–262. doi: 10.1038/364259a0. [DOI] [PubMed] [Google Scholar]
  16. Johnson T. E. Aging can be genetically dissected into component processes using long-lived lines of Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3777–3781. doi: 10.1073/pnas.84.11.3777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kenyon C., Chang J., Gensch E., Rudner A., Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993 Dec 2;366(6454):461–464. doi: 10.1038/366461a0. [DOI] [PubMed] [Google Scholar]
  18. Kimelman D., Kirschner M., Scherson T. The events of the midblastula transition in Xenopus are regulated by changes in the cell cycle. Cell. 1987 Feb 13;48(3):399–407. doi: 10.1016/0092-8674(87)90191-7. [DOI] [PubMed] [Google Scholar]
  19. Konopka R. J., Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2112–2116. doi: 10.1073/pnas.68.9.2112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kyriacou C. P., Hall J. C. Circadian rhythm mutations in Drosophila melanogaster affect short-term fluctuations in the male's courtship song. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6729–6733. doi: 10.1073/pnas.77.11.6729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Liu D. W., Thomas J. H. Regulation of a periodic motor program in C. elegans. J Neurosci. 1994 Apr;14(4):1953–1962. doi: 10.1523/JNEUROSCI.14-04-01953.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Meech R. W. Membrane potential oscillations in molluscan "burster" neurones. J Exp Biol. 1979 Aug;81:93–112. doi: 10.1242/jeb.81.1.93. [DOI] [PubMed] [Google Scholar]
  23. O'Rourke B., Ramza B. M., Marban E. Oscillations of membrane current and excitability driven by metabolic oscillations in heart cells. Science. 1994 Aug 12;265(5174):962–966. doi: 10.1126/science.8052856. [DOI] [PubMed] [Google Scholar]
  24. Ralph M. R., Menaker M. A mutation of the circadian system in golden hamsters. Science. 1988 Sep 2;241(4870):1225–1227. doi: 10.1126/science.3413487. [DOI] [PubMed] [Google Scholar]
  25. Rapp P. E., Berridge M. J. Oscillations in calcium-cyclic AMP control loops form the basis of pacemaker activity and other high frequency biological rhythms. J Theor Biol. 1977 Jun 7;66(3):497–525. doi: 10.1016/0022-5193(77)90299-5. [DOI] [PubMed] [Google Scholar]
  26. Schierenberg E. Altered cell-division rates after laser-induced cell fusion in nematode embryos. Dev Biol. 1984 Jan;101(1):240–245. doi: 10.1016/0012-1606(84)90136-2. [DOI] [PubMed] [Google Scholar]
  27. Schierenberg E., Wood W. B. Control of cell-cycle timing in early embryos of Caenorhabditis elegans. Dev Biol. 1985 Feb;107(2):337–354. doi: 10.1016/0012-1606(85)90316-1. [DOI] [PubMed] [Google Scholar]
  28. Schnabel R., Schnabel H. Early determination in the C. elegans embryo: a gene, cib-1, required to specify a set of stem-cell-like blastomeres. Development. 1990 Jan;108(1):107–119. doi: 10.1242/dev.108.Supplement.107. [DOI] [PubMed] [Google Scholar]
  29. Sherr C. J. Mammalian G1 cyclins. Cell. 1993 Jun 18;73(6):1059–1065. doi: 10.1016/0092-8674(93)90636-5. [DOI] [PubMed] [Google Scholar]
  30. Thomas J. H. Genetic analysis of defecation in Caenorhabditis elegans. Genetics. 1990 Apr;124(4):855–872. doi: 10.1093/genetics/124.4.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tornheim K. Co-ordinate control of phosphofructokinase and pyruvate kinase by fructose diphosphate: a mechanism for amplification and step changes in the regulation of glycolysis in liver. J Theor Biol. 1980 Jul 21;85(2):199–222. doi: 10.1016/0022-5193(80)90018-1. [DOI] [PubMed] [Google Scholar]
  32. Van Voorhies W. A. Production of sperm reduces nematode lifespan. Nature. 1992 Dec 3;360(6403):456–458. doi: 10.1038/360456a0. [DOI] [PubMed] [Google Scholar]
  33. Vanfleteren J. R. Oxidative stress and ageing in Caenorhabditis elegans. Biochem J. 1993 Jun 1;292(Pt 2):605–608. doi: 10.1042/bj2920605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vitaterna M. H., King D. P., Chang A. M., Kornhauser J. M., Lowrey P. L., McDonald J. D., Dove W. F., Pinto L. H., Turek F. W., Takahashi J. S. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science. 1994 Apr 29;264(5159):719–725. doi: 10.1126/science.8171325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ward S., Carrel J. S. Fertilization and sperm competition in the nematode Caenorhabditis elegans. Dev Biol. 1979 Dec;73(2):304–321. doi: 10.1016/0012-1606(79)90069-1. [DOI] [PubMed] [Google Scholar]
  36. Zerr D. M., Hall J. C., Rosbash M., Siwicki K. K. Circadian fluctuations of period protein immunoreactivity in the CNS and the visual system of Drosophila. J Neurosci. 1990 Aug;10(8):2749–2762. doi: 10.1523/JNEUROSCI.10-08-02749.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES