Abstract
The small ovary gene (sov) is required for the development of the Drosophila ovary. Six EMS-induced recessive alleles have been identified. Hypomorphic alleles are female sterile and have no effect on male fertility, whereas more severe mutations result in lethality. The female-sterile alleles produce a range of mutant phenotypes that affect the differentiation of both somatic and germline tissues. These mutations generally produce small ovaries that contain few egg cysts and disorganized ovarioles, and in the most extreme case no ovarian tissue is present. The mutant egg cysts that develop have aberrant morphology, including abnormal numbers of nurse cells and patches of necrotic cells. We demonstrate that sov gene expression is not required in the germline for the development of functional egg cysts. This indicates that the sov function is somatic dependent. We present evidence using loss-of-function and constitutive forms of the somatic sex regulatory genes that sov activity is essential for the development of the somatic ovary regardless of the chromosomal sex of the fly. In addition, the genetic mapping of the sov locus is presented, including the characterization of two lethal sov alleles and complementation mapping with existing rearrangements.
Full Text
The Full Text of this article is available as a PDF (4.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker B. S., Belote J. M. Sex determination and dosage compensation in Drosophila melanogaster. Annu Rev Genet. 1983;17:345–393. doi: 10.1146/annurev.ge.17.120183.002021. [DOI] [PubMed] [Google Scholar]
- Baker B. S., Ridge K. A. Sex and the single cell. I. On the action of major loci affecting sex determination in Drosophila melanogaster. Genetics. 1980 Feb;94(2):383–423. doi: 10.1093/genetics/94.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Belote J. M., Baker B. S. Sex determination in Drosophila melanogaster: analysis of transformer-2, a sex-transforming locus. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1568–1572. doi: 10.1073/pnas.79.5.1568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Belote J. M., Lucchesi J. C. Control of X chromosome transcription by the maleless gene in Drosophila. Nature. 1980 Jun 19;285(5766):573–575. doi: 10.1038/285573a0. [DOI] [PubMed] [Google Scholar]
- Brown E H, King R C. Studies on the Expression of the Transformer Gene of Drosophila Melanogaster. Genetics. 1961 Feb;46(2):143–156. doi: 10.1093/genetics/46.2.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark I., Giniger E., Ruohola-Baker H., Jan L. Y., Jan Y. N. Transient posterior localization of a kinesin fusion protein reflects anteroposterior polarity of the Drosophila oocyte. Curr Biol. 1994 Apr 1;4(4):289–300. doi: 10.1016/s0960-9822(00)00068-3. [DOI] [PubMed] [Google Scholar]
- Fujihara T., Kawabe M., Oishi K. A sex-transformation gene in Drosophila melanogaster. J Hered. 1978 Jul-Aug;69(4):229–236. doi: 10.1093/oxfordjournals.jhered.a108936. [DOI] [PubMed] [Google Scholar]
- Kuroda M. I., Kernan M. J., Kreber R., Ganetzky B., Baker B. S. The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila. Cell. 1991 Sep 6;66(5):935–947. doi: 10.1016/0092-8674(91)90439-6. [DOI] [PubMed] [Google Scholar]
- Lefevre G. The distribution of randomly recovered X-ray-induced sex-linked genetic effects in Drosophila melanogaster. Genetics. 1981 Nov-Dec;99(3-4):461–480. doi: 10.1093/genetics/99.3-4.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lefevre G., Watkins W. The question of the total gene number in Drosophila melanogaster. Genetics. 1986 Aug;113(4):869–895. doi: 10.1093/genetics/113.4.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lucchesi J. C., Manning J. E. Gene dosage compensation in Drosophila melanogaster. Adv Genet. 1987;24:371–429. doi: 10.1016/s0065-2660(08)60013-9. [DOI] [PubMed] [Google Scholar]
- Marsh J. L., Wieschaus E. Is sex determination in germ line and soma controlled by separate genetic mechanisms? Nature. 1978 Mar 16;272(5650):249–251. doi: 10.1038/272249a0. [DOI] [PubMed] [Google Scholar]
- McKeown M., Belote J. M., Boggs R. T. Ectopic expression of the female transformer gene product leads to female differentiation of chromosomally male Drosophila. Cell. 1988 Jun 17;53(6):887–895. doi: 10.1016/s0092-8674(88)90369-8. [DOI] [PubMed] [Google Scholar]
- Mohler J. D. Developmental genetics of the Drosophila egg. I. Identification of 59 sex-linked cistrons with maternal effects on embryonic development. Genetics. 1977 Feb;85(2):259–272. doi: 10.1093/genetics/85.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montell D. J., Rorth P., Spradling A. C. slow border cells, a locus required for a developmentally regulated cell migration during oogenesis, encodes Drosophila C/EBP. Cell. 1992 Oct 2;71(1):51–62. doi: 10.1016/0092-8674(92)90265-e. [DOI] [PubMed] [Google Scholar]
- Nöthiger R., Jonglez M., Leuthold M., Meier-Gerschwiler P., Weber T. Sex determination in the germ line of Drosophila depends on genetic signals and inductive somatic factors. Development. 1989 Nov;107(3):505–518. doi: 10.1242/dev.107.3.505. [DOI] [PubMed] [Google Scholar]
- Perrimon N., Gans M. Clonal analysis of the tissue specificity of recessive female-sterile mutations of Drosophila melanogaster using a dominant female-sterile mutation Fs(1)K1237. Dev Biol. 1983 Dec;100(2):365–373. doi: 10.1016/0012-1606(83)90231-2. [DOI] [PubMed] [Google Scholar]
- Perrimon N., Mohler D., Engstrom L., Mahowald A. P. X-linked female-sterile loci in Drosophila melanogaster. Genetics. 1986 Jul;113(3):695–712. doi: 10.1093/genetics/113.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruohola H., Bremer K. A., Baker D., Swedlow J. R., Jan L. Y., Jan Y. N. Role of neurogenic genes in establishment of follicle cell fate and oocyte polarity during oogenesis in Drosophila. Cell. 1991 Aug 9;66(3):433–449. doi: 10.1016/0092-8674(81)90008-8. [DOI] [PubMed] [Google Scholar]
- Schüpbach T. Germ line and soma cooperate during oogenesis to establish the dorsoventral pattern of egg shell and embryo in Drosophila melanogaster. Cell. 1987 Jun 5;49(5):699–707. doi: 10.1016/0092-8674(87)90546-0. [DOI] [PubMed] [Google Scholar]
- Steinmann-Zwicky M., Schmid H., Nöthiger R. Cell-autonomous and inductive signals can determine the sex of the germ line of drosophila by regulating the gene Sxl. Cell. 1989 Apr 7;57(1):157–166. doi: 10.1016/0092-8674(89)90181-5. [DOI] [PubMed] [Google Scholar]
- Steinmann-Zwicky M. Sex determination of the Drosophila germ line: tra and dsx control somatic inductive signals. Development. 1994 Mar;120(3):707–716. doi: 10.1242/dev.120.3.707. [DOI] [PubMed] [Google Scholar]
- Stevens L. M., Frohnhöfer H. G., Klingler M., Nüsslein-Volhard C. Localized requirement for torso-like expression in follicle cells for development of terminal anlagen of the Drosophila embryo. Nature. 1990 Aug 16;346(6285):660–663. doi: 10.1038/346660a0. [DOI] [PubMed] [Google Scholar]
- Sturtevant A H. A Gene in Drosophila Melanogaster That Transforms Females into Males. Genetics. 1945 May;30(3):297–299. doi: 10.1093/genetics/30.3.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor B. J. Differentiation of a male-specific muscle in Drosophila melanogaster does not require the sex-determining genes doublesex or intersex. Genetics. 1992 Sep;132(1):179–191. doi: 10.1093/genetics/132.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wieschaus E., Nöthiger R. The role of the transformer genes in the development of genitalia and analia of Drosophila melanogaster. Dev Biol. 1982 Apr;90(2):320–334. doi: 10.1016/0012-1606(82)90381-5. [DOI] [PubMed] [Google Scholar]
- Wieschaus E., Szabad J. The development and function of the female germ line in Drosophila melanogaster: a cell lineage study. Dev Biol. 1979 Jan;68(1):29–46. doi: 10.1016/0012-1606(79)90241-0. [DOI] [PubMed] [Google Scholar]
