Skip to main content
Genetics logoLink to Genetics
. 1995 Mar;139(3):1371–1382. doi: 10.1093/genetics/139.3.1371

Linkage Map of the Honey Bee, Apis Mellifera, Based on Rapd Markers

G J Hunt 1, R E Page-Jr 1
PMCID: PMC1206463  PMID: 7768445

Abstract

A linkage map was constructed for the honey bee based on the segregation of 365 random amplified polymorphic DNA (RAPD) markers in haploid male progeny of a single female bee. The X locus for sex determination and genes for black body color and malate dehydrogenase were mapped to separate linkage groups. RAPD markers were very efficient for mapping, with an average of about 2.8 loci mapped for each 10-nucleotide primer that was used in polymerase chain reactions. The mean interval size between markers on the map was 9.1 cM. The map covered 3110 cM of linked markers on 26 linkage groups. We estimate the total genome size to be ~3450 cM. The size of the map indicated a very high recombination rate for the honey bee. The relationship of physical to genetic distance was estimated at 52 kb/cM, suggesting that map-based cloning of genes will be feasible for this species.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carlier M., Roubertoux P. L., Kottler M. L., Degrelle H. Y chromosome and aggression in strains of laboratory mice. Behav Genet. 1990 Jan;20(1):137–156. doi: 10.1007/BF01070750. [DOI] [PubMed] [Google Scholar]
  2. Contel E. P., Mestriner M. A., Martins E. Genetic control and development expression of malate dehydrogenase in Apis mellifera. Biochem Genet. 1977 Oct;15(9-10):859–876. doi: 10.1007/BF00483982. [DOI] [PubMed] [Google Scholar]
  3. Crain W. R., Davidson E. H., Britten R. J. Contrasting patterns of DNA sequence arrangement in Apis mellifera (honeybee) and Musca domestica (housefly). Chromosoma. 1976 Dec 6;59(1):1–12. doi: 10.1007/BF00327705. [DOI] [PubMed] [Google Scholar]
  4. Dietrich W., Katz H., Lincoln S. E., Shin H. S., Friedman J., Dracopoli N. C., Lander E. S. A genetic map of the mouse suitable for typing intraspecific crosses. Genetics. 1992 Jun;131(2):423–447. doi: 10.1093/genetics/131.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gage L. P. The Bombyx mori genome: analysis by DNA reassociation kinetics. Chromosoma. 1974 Mar 1;45(1):27–42. doi: 10.1007/BF00283828. [DOI] [PubMed] [Google Scholar]
  6. Jordan R. A., Brosemer R. W. Characterization of DNA from three bee species. J Insect Physiol. 1974 Dec;20(12):2513–2520. doi: 10.1016/0022-1910(74)90035-3. [DOI] [PubMed] [Google Scholar]
  7. Jost E., Mameli M. DNA content in nine species of Nematocera with special reference to the sibling species of the Anopheles maculipennis group and the Culex pipiens group. Chromosoma. 1972;37(2):201–208. doi: 10.1007/BF00284939. [DOI] [PubMed] [Google Scholar]
  8. Kafatos F. C., Louis C., Savakis C., Glover D. M., Ashburner M., Link A. J., Sidén-Kiamos I., Saunders R. D. Integrated maps of the Drosophila genome: progress and prospects. Trends Genet. 1991 May;7(5):155–161. doi: 10.1016/0168-9525(91)90379-5. [DOI] [PubMed] [Google Scholar]
  9. King J. S., Mortimer R. K. A polymerization model of chiasma interference and corresponding computer simulation. Genetics. 1990 Dec;126(4):1127–1138. doi: 10.1093/genetics/126.4.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laird C. D. DNA of Drosophila chromosomes. Annu Rev Genet. 1973;7:177–204. doi: 10.1146/annurev.ge.07.120173.001141. [DOI] [PubMed] [Google Scholar]
  11. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  12. Lincoln S. E., Lander E. S. Systematic detection of errors in genetic linkage data. Genomics. 1992 Nov;14(3):604–610. doi: 10.1016/s0888-7543(05)80158-2. [DOI] [PubMed] [Google Scholar]
  13. Metcalf R. A., Marlin J. C., Whitt G. S. Low levels of genetic heterozygosity in hymenoptera. Nature. 1975 Oct 30;257(5529):792–794. doi: 10.1038/257792a0. [DOI] [PubMed] [Google Scholar]
  14. Mortimer R. K., Contopoulou C. R., King J. S. Genetic and physical maps of Saccharomyces cerevisiae, Edition 11. Yeast. 1992 Oct;8(10):817–902. doi: 10.1002/yea.320081002. [DOI] [PubMed] [Google Scholar]
  15. Morton N. E. Parameters of the human genome. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7474–7476. doi: 10.1073/pnas.88.17.7474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Olson M., Hood L., Cantor C., Botstein D. A common language for physical mapping of the human genome. Science. 1989 Sep 29;245(4925):1434–1435. doi: 10.1126/science.2781285. [DOI] [PubMed] [Google Scholar]
  17. Paterson A. H., Damon S., Hewitt J. D., Zamir D., Rabinowitch H. D., Lincoln S. E., Lander E. S., Tanksley S. D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics. 1991 Jan;127(1):181–197. doi: 10.1093/genetics/127.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Paterson A. H., Lander E. S., Hewitt J. D., Peterson S., Lincoln S. E., Tanksley S. D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature. 1988 Oct 20;335(6192):721–726. doi: 10.1038/335721a0. [DOI] [PubMed] [Google Scholar]
  19. Rao P. N., Rai K. Inter and intraspecific variation in nuclear DNA content in Aedes mosquitoes. Heredity (Edinb) 1987 Oct;59(Pt 2):253–258. doi: 10.1038/hdy.1987.120. [DOI] [PubMed] [Google Scholar]
  20. Rasch E. M., Cassidy J. D., King R. C. Evidence for dosage compensation in parthenogenetic Hymenoptera. Chromosoma. 1977 Feb 23;59(4):323–340. doi: 10.1007/BF00327973. [DOI] [PubMed] [Google Scholar]
  21. Severson D. W., Mori A., Zhang Y., Christensen B. M. Linkage map for Aedes aegypti using restriction fragment length polymorphisms. J Hered. 1993 Jul-Aug;84(4):241–247. doi: 10.1093/oxfordjournals.jhered.a111333. [DOI] [PubMed] [Google Scholar]
  22. Sparrow A. H., Price H. J., Underbrink A. G. A survey of DNA content per cell and per chromosome of prokaryotic and eukaryotic organisms: some evolutionary considerations. Brookhaven Symp Biol. 1972;23:451–494. [PubMed] [Google Scholar]
  23. Stuber C. W., Lincoln S. E., Wolff D. W., Helentjaris T., Lander E. S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics. 1992 Nov;132(3):823–839. doi: 10.1093/genetics/132.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tanksley S. D., Ganal M. W., Prince J. P., de Vicente M. C., Bonierbale M. W., Broun P., Fulton T. M., Giovannoni J. J., Grandillo S., Martin G. B. High density molecular linkage maps of the tomato and potato genomes. Genetics. 1992 Dec;132(4):1141–1160. doi: 10.1093/genetics/132.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tzeng T. H., Lyngholm L. K., Ford C. F., Bronson C. R. A restriction fragment length polymorphism map and electrophoretic karyotype of the fungal maize pathogen Cochliobolus heterostrophus. Genetics. 1992 Jan;130(1):81–96. doi: 10.1093/genetics/130.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. WHITING A. R. Genetics of Habrobracon. Adv Genet. 1961;10:295–348. doi: 10.1016/s0065-2660(08)60120-0. [DOI] [PubMed] [Google Scholar]
  27. Wells R., Royer H. D., Hollenberg C. P. Non Xenopus-like DNA sequence organization in the Chironomus tentans genome. Mol Gen Genet. 1976 Aug 10;147(1):45–51. doi: 10.1007/BF00337934. [DOI] [PubMed] [Google Scholar]
  28. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zheng L., Collins F. H., Kumar V., Kafatos F. C. A detailed genetic map for the X chromosome of the malaria vector, Anopheles gambiae. Science. 1993 Jul 30;261(5121):605–608. doi: 10.1126/science.8342025. [DOI] [PubMed] [Google Scholar]
  30. Zheng L., Saunders R. D., Fortini D., della Torre A., Coluzzi M., Glover D. M., Kafatos F. C. Low-resolution genome map of the malaria mosquito Anopheles gambiae. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11187–11191. doi: 10.1073/pnas.88.24.11187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. de Belle J. S., Hilliker A. J., Sokolowski M. B. Genetic localization of foraging (for): a major gene for larval behavior in Drosophila melanogaster. Genetics. 1989 Sep;123(1):157–163. doi: 10.1093/genetics/123.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES