Skip to main content
Genetics logoLink to Genetics
. 1995 Apr;139(4):1567–1583. doi: 10.1093/genetics/139.4.1567

Genes That Regulate Both Development and Longevity in Caenorhabditis Elegans

P L Larsen 1, P S Albert 1, D L Riddle 1
PMCID: PMC1206485  PMID: 7789761

Abstract

The nematode Caenorhabditis elegans responds to conditions of overcrowing and limited food by arresting development as a dauer larva. Genetic analysis of mutations that alter dauer larva formation (daf mutations) is presented along with an updated genetic pathway for dauer vs. nondauer development. Mutations in the daf-2 and daf-23 genes double adult life span, whereas mutations in four other dauer-constitutive genes positioned in a separate branch of this pathway (daf-1, daf-4, daf-7 and daf-8) do not. The increased life spans are suppressed completely by a daf-16 mutation and partially in a daf-2; daf-18 double mutant. A genetic pathway for determination of adult life span is presented based on the same strains and growth conditions used to characterize Daf phenotypes. Both dauer larva formation and adult life span are affected in daf-2; daf-12 double mutants in an allele-specific manner. Mutations in daf-12 do not extend adult life span, but certain combinations of daf-2 and daf-12 mutant alleles nearly quadruple it. This synergistic effect, which does not equivalently extend the fertile period, is the largest genetic extension of life span yet observed in a metazoan.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert P. S., Brown S. J., Riddle D. L. Sensory control of dauer larva formation in Caenorhabditis elegans. J Comp Neurol. 1981 May 20;198(3):435–451. doi: 10.1002/cne.901980305. [DOI] [PubMed] [Google Scholar]
  2. Albert P. S., Riddle D. L. Developmental alterations in sensory neuroanatomy of the Caenorhabditis elegans dauer larva. J Comp Neurol. 1983 Oct 1;219(4):461–481. doi: 10.1002/cne.902190407. [DOI] [PubMed] [Google Scholar]
  3. Albert P. S., Riddle D. L. Mutants of Caenorhabditis elegans that form dauer-like larvae. Dev Biol. 1988 Apr;126(2):270–293. doi: 10.1016/0012-1606(88)90138-8. [DOI] [PubMed] [Google Scholar]
  4. Byerly L., Scherer S., Russell R. L. The life cycle of the nematode Caenorhabditis elegans. II. A simplified method for mutant characterization. Dev Biol. 1976 Jul 1;51(1):34–48. doi: 10.1016/0012-1606(76)90120-2. [DOI] [PubMed] [Google Scholar]
  5. Cassada R. C., Russell R. L. The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol. 1975 Oct;46(2):326–342. doi: 10.1016/0012-1606(75)90109-8. [DOI] [PubMed] [Google Scholar]
  6. Estevez M., Attisano L., Wrana J. L., Albert P. S., Massagué J., Riddle D. L. The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development. Nature. 1993 Oct 14;365(6447):644–649. doi: 10.1038/365644a0. [DOI] [PubMed] [Google Scholar]
  7. Friedman D. B., Johnson T. E. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics. 1988 Jan;118(1):75–86. doi: 10.1093/genetics/118.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Georgi L. L., Albert P. S., Riddle D. L. daf-1, a C. elegans gene controlling dauer larva development, encodes a novel receptor protein kinase. Cell. 1990 May 18;61(4):635–645. doi: 10.1016/0092-8674(90)90475-t. [DOI] [PubMed] [Google Scholar]
  9. Golden J. W., Riddle D. L. A gene affecting production of the Caenorhabditis elegans dauer-inducing pheromone. Mol Gen Genet. 1985;198(3):534–536. doi: 10.1007/BF00332953. [DOI] [PubMed] [Google Scholar]
  10. Golden J. W., Riddle D. L. A pheromone-induced developmental switch in Caenorhabditis elegans: Temperature-sensitive mutants reveal a wild-type temperature-dependent process. Proc Natl Acad Sci U S A. 1984 Feb;81(3):819–823. doi: 10.1073/pnas.81.3.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gottlieb S., Ruvkun G. daf-2, daf-16 and daf-23: genetically interacting genes controlling Dauer formation in Caenorhabditis elegans. Genetics. 1994 May;137(1):107–120. doi: 10.1093/genetics/137.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hodgkin J., Barnes T. M. More is not better: brood size and population growth in a self-fertilizing nematode. Proc Biol Sci. 1991 Oct 22;246(1315):19–24. doi: 10.1098/rspb.1991.0119. [DOI] [PubMed] [Google Scholar]
  13. Horvitz H. R., Brenner S., Hodgkin J., Herman R. K. A uniform genetic nomenclature for the nematode Caenorhabditis elegans. Mol Gen Genet. 1979 Sep;175(2):129–133. doi: 10.1007/BF00425528. [DOI] [PubMed] [Google Scholar]
  14. Hutchinson E. W., Rose M. R. Quantitative genetics of postponed aging in Drosophila melanogaster. I. Analysis of outbred populations. Genetics. 1991 Apr;127(4):719–727. doi: 10.1093/genetics/127.4.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Klass M. R. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev. 1977 Nov-Dec;6(6):413–429. doi: 10.1016/0047-6374(77)90043-4. [DOI] [PubMed] [Google Scholar]
  16. Klass M., Hirsh D. Non-ageing developmental variant of Caenorhabditis elegans. Nature. 1976 Apr 8;260(5551):523–525. doi: 10.1038/260523a0. [DOI] [PubMed] [Google Scholar]
  17. Larsen P. L. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8905–8909. doi: 10.1073/pnas.90.19.8905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lewis J. A., Hodgkin J. A. Specific neuroanatomical changes in chemosensory mutants of the nematode Caenorhabditis elegans. J Comp Neurol. 1977 Apr 1;172(3):489–510. doi: 10.1002/cne.901720306. [DOI] [PubMed] [Google Scholar]
  19. Lin H. Y., Wang X. F., Ng-Eaton E., Weinberg R. A., Lodish H. F. Expression cloning of the TGF-beta type II receptor, a functional transmembrane serine/threonine kinase. Cell. 1992 Feb 21;68(4):775–785. doi: 10.1016/0092-8674(92)90152-3. [DOI] [PubMed] [Google Scholar]
  20. Mathews L. S., Vale W. W. Expression cloning of an activin receptor, a predicted transmembrane serine kinase. Cell. 1991 Jun 14;65(6):973–982. doi: 10.1016/0092-8674(91)90549-e. [DOI] [PubMed] [Google Scholar]
  21. Picard D., Khursheed B., Garabedian M. J., Fortin M. G., Lindquist S., Yamamoto K. R. Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature. 1990 Nov 8;348(6297):166–168. doi: 10.1038/348166a0. [DOI] [PubMed] [Google Scholar]
  22. Riddle D. L., Swanson M. M., Albert P. S. Interacting genes in nematode dauer larva formation. Nature. 1981 Apr 23;290(5808):668–671. doi: 10.1038/290668a0. [DOI] [PubMed] [Google Scholar]
  23. Sternberg P. W. Intercellular signaling and signal transduction in C. elegans. Annu Rev Genet. 1993;27:497–521. doi: 10.1146/annurev.ge.27.120193.002433. [DOI] [PubMed] [Google Scholar]
  24. Swanson M. M., Riddle D. L. Critical periods in the development of the Caenorhabditis elegans dauer larva. Dev Biol. 1981 May;84(1):27–40. doi: 10.1016/0012-1606(81)90367-5. [DOI] [PubMed] [Google Scholar]
  25. Thomas J. H., Birnby D. A., Vowels J. J. Evidence for parallel processing of sensory information controlling dauer formation in Caenorhabditis elegans. Genetics. 1993 Aug;134(4):1105–1117. doi: 10.1093/genetics/134.4.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Trent C., Tsuing N., Horvitz H. R. Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics. 1983 Aug;104(4):619–647. doi: 10.1093/genetics/104.4.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vanfleteren J. R. Oxidative stress and ageing in Caenorhabditis elegans. Biochem J. 1993 Jun 1;292(Pt 2):605–608. doi: 10.1042/bj2920605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wadsworth W. G., Riddle D. L. Developmental regulation of energy metabolism in Caenorhabditis elegans. Dev Biol. 1989 Mar;132(1):167–173. doi: 10.1016/0012-1606(89)90214-5. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES