Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1965 Feb;94(2):309–313. doi: 10.1042/bj0940309

Regulation of xanthine dehydrogenase in chick liver. Effect of starvation and of administration of purines and purine nucleosides

F Stirpe 1,*, E Della Corte 1
PMCID: PMC1206511  PMID: 14348191

Abstract

1. The xanthine-dehydrogenase activity of chick liver, expressed per mg. of nitrogen, is increased during starvation. 2. Administration of inosine and possibly of adenine has a comparable effect on the xanthine dehydrogenase, and also induces an elevation of the total quantity of enzyme. Hypoxanthine, xanthine, guanine, xanthosine, guanosine and adenosine are ineffective. Cortisone is equally ineffective. 3. The administration of puromycin abolishes the effect of inosine and reduces that of starvation. It is concluded that inosine induces an increased synthesis of xanthine dehydrogenase, whereas during starvation the enzyme is spared with respect to other liver proteins. 4. The hypothesis is formulated that chick-liver xanthine dehydrogenase is an adaptive enzyme, its activity being regulated by inosine or by one of its metabolites.

Full text

PDF
309

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Booth V. H. The specificity of xanthine oxidase. Biochem J. 1938 Mar;32(3):494–502. doi: 10.1042/bj0320494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DIETRICH L. S. Factors affecting the induction of xanthine oxidase of mouse liver. J Biol Chem. 1954 Nov;211(1):79–85. [PubMed] [Google Scholar]
  3. DINNING J. S. An elevated xanthine oxidase in livers of vitamin E-deficient rabbits. J Biol Chem. 1953 May;202(1):213–215. [PubMed] [Google Scholar]
  4. Dixon M. Studies on Xanthine Oxidase: The Specificity of the System. Biochem J. 1926;20(4):703–718. doi: 10.1042/bj0200703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FEIGELSON M., FEIGELSON P., GROSS P. R. Xanthine oxidase activity in regenerating liver. J Gen Physiol. 1957 Nov 20;41(2):233–242. doi: 10.1085/jgp.41.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FEIGELSON P., FEIGELSON M., WOOD T. R. Apparent simultaneous adaptive enzyme formation in C57 mice. Science. 1954 Sep 24;120(3117):502–503. doi: 10.1126/science.120.3117.502. [DOI] [PubMed] [Google Scholar]
  7. FITCH C. D., HSU C., DINNING J. S. Some factors affecting kidney transamidinase activity in rats. J Biol Chem. 1960 Aug;235:2362–2364. [PubMed] [Google Scholar]
  8. GREENBERG G. R. De novo synthesis of hypoxanthine via inosine-5-phosphate and inosine. J Biol Chem. 1951 Jun;190(2):611–631. [PubMed] [Google Scholar]
  9. GREENGARD O., SMITH M. A., ACS G. Relation of cortisone and synthesis of ribonucleic acid to induced and developmental enzyme formation. J Biol Chem. 1963 Apr;238:1548–1551. [PubMed] [Google Scholar]
  10. KLENOW H. The enzymic oxidation and assay of adenine. Biochem J. 1952 Jan;50(3):404–407. doi: 10.1042/bj0500404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. KOSUGE T., KAMIYA H. A new cyclic dipeptide from peptone. Nature. 1960 Dec 24;188:1112–1112. doi: 10.1038/1881112a0. [DOI] [PubMed] [Google Scholar]
  12. LEWIN I., O'NEAL M. A., REID E. Hormones and liver cytoplasm. 2. Adenosine triphosphatase, glucose 6-phosphatase and xanthine oxidase as affected by hypophysectomy, growth-hormone treatment and adrenalectomy. Biochem J. 1956 Dec;64(4):730–734. doi: 10.1042/bj0640730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LITWACK G., BOTHWELL J. W., WILLIAMS J. N., Jr, ELVEHJEM C. A. A colorimetric assay for xanthine oxidase in rat liver homogenates. J Biol Chem. 1953 Jan;200(1):303–310. [PubMed] [Google Scholar]
  14. LITWACK G., WILLIAMS J. N., Jr, FEIGELSON P., ELVEHJEM C. A. Xanthine oxidase and liver nitrogen variation with dietary protein. J Biol Chem. 1950 Dec;187(2):605–611. [PubMed] [Google Scholar]
  15. MARCHETTI M., VIVIANI R. L'allantoina urinaria nella carenza dei fattori proteici animali (FPA) della caseina. Boll Soc Ital Biol Sper. 1956 Mar-May;32(3-5):211–212. [PubMed] [Google Scholar]
  16. MORELL D. B. The oxidation of reduced xanthine dehydrogenase in chicken liver. Biochim Biophys Acta. 1955 Feb;16(2):258–263. doi: 10.1016/0006-3002(55)90212-2. [DOI] [PubMed] [Google Scholar]
  17. RABBI A., MARCHETTI M., VIVIANI R. Comportamento della xantinossidasi nel fegato di ratto durante la carenza dei fattori proteici animali. Boll Soc Ital Biol Sper. 1956 Sep;32(9):1149–1151. [PubMed] [Google Scholar]
  18. RICCERI G. La distribuzione della xantinossidasi nelle diverse specie di uccelli. I. La presenza della xantinossidasi nel fegato delle diverse specie e il problema dell'uricosintesi negli uccelli. Arch Sci Biol (Bologna) 1953 Nov-Dec;37(6):605–610. [PubMed] [Google Scholar]
  19. RICHERT D. A., WESTERFELD W. W. Vitamin E deficiency and xanthine oxidase in rabbits. Proc Soc Exp Biol Med. 1953 Nov;84(2):468–470. doi: 10.3181/00379727-84-20680. [DOI] [PubMed] [Google Scholar]
  20. RICHERT D. A., WESTERFELD W. W. Xanthine oxidase in different species. Proc Soc Exp Biol Med. 1951 Feb;76(2):252–254. doi: 10.3181/00379727-76-18452. [DOI] [PubMed] [Google Scholar]
  21. SCHIMKE R. T. Adaptive characteristics of urea cycle enzymes in the rat. J Biol Chem. 1962 Feb;237:459–468. [PubMed] [Google Scholar]
  22. SCHIMKE R. T., BROWN M. B., SMALLMAN E. T. Turnover of rat liver arginase. Ann N Y Acad Sci. 1963 Jan 21;102:587–601. doi: 10.1111/j.1749-6632.1963.tb13662.x. [DOI] [PubMed] [Google Scholar]
  23. SCHIMKE R. T. Differential effects of fasting and protein-free diets on levels of urea cycle enzymes in rat liver. J Biol Chem. 1962 Jun;237:1921–1924. [PubMed] [Google Scholar]
  24. SCHIMKE R. T. Studies on factors affecting the levels of urea cycle enzymes in rat liver. J Biol Chem. 1963 Mar;238:1012–1018. [PubMed] [Google Scholar]
  25. SCHULMAN M. P., BUCHANAN J. M. Biosynthesis of the purines. II. Metabolism of 4-amino-5-imidazolecarboxamide in pigeon liver. J Biol Chem. 1952 May;196(2):513–526. [PubMed] [Google Scholar]
  26. SCHWARTZ H. G., LITWACK G. A photometric method for avian liver xanthine dehydrogenase. Nature. 1957 Oct 12;180(4589):761–763. doi: 10.1038/180761b0. [DOI] [PubMed] [Google Scholar]
  27. STIRPE F., DE STEFANO F. Comportamento della xantinossidasi nell'inanizione e nella malnutrizione calorica e orizanica. Sperimentale. 1957 Nov-Dec;107(6):471–480. [PubMed] [Google Scholar]
  28. Schimke R. T., Sweeney E. W., Berlin C. M. An analysis of the kinetics of rat liver tryptophan pyrrolase induction: the significance of both enzyme synthesis and degradation. Biochem Biophys Res Commun. 1964 Mar 26;15(3):214–219. doi: 10.1016/0006-291x(64)90148-2. [DOI] [PubMed] [Google Scholar]
  29. WALKER J. B. Metabolic control of creatine biosynthesis. I. Effect of dietary creatine. J Biol Chem. 1960 Aug;235:2357–2361. [PubMed] [Google Scholar]
  30. YOUNG J. M., DINNING J. S. A relationship of vitamin E to nucleic acid metabolism. J Biol Chem. 1951 Dec;193(2):743–747. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES