Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1965 Feb;94(2):446–451. doi: 10.1042/bj0940446

Nicotinamide-adenine dinucleotide-glycohydrolase activity in experimental tuberculosis

K P Gopinathan 1, M Sirsi 1, C S Vaidyanathan 1
PMCID: PMC1206526  PMID: 14348204

Abstract

1. The specific NAD-glycohydrolase activity is increased 70 and 50% over the normal in lung and liver tissues respectively of tuberculous mice. 2. Concomitant with the increase in the NAD-glycohydrolase activity, the NAD–isonicotinic acid hydrazide-exchange activity also is increased in infection. The isonicotinic acid hydrazide analogue of NAD formed by the lung enzyme from tuberculous mice has been isolated and identified. 3. The increased NAD-glycohydrolase activity in infection has been shown to be of host-tissue origin and not due to the activation of the bacterial enzyme on growth of the organism in vivo. 4. In addition to NAD, NMN and NADP also participate in the exchange reaction with isonicotinic acid hydrazide catalysed by NAD glycohydrolase. The interference of the drug at the nucleotide level of metabolism is therefore suggested.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARTMAN M., BEKIERKUNST A., BARKAI E. SUBMICROSOMAL LOCALIZATION OF MOUSE-LIVER NICOTINAMIDE-ADENINE DINUCLEOTIDE GLYCOHYDROLASE. Biochim Biophys Acta. 1964 Mar 9;81:614–617. doi: 10.1016/0926-6569(64)90152-x. [DOI] [PubMed] [Google Scholar]
  2. ARTMAN M., BEKIERKUNST A. Mycobacterium tuberculosis H37Rv grown in vivo: nature of the inhibitor of lactic dehydrogenase of Mycobacterium phlei. Proc Soc Exp Biol Med. 1961 Mar;106:610–614. doi: 10.3181/00379727-106-26419. [DOI] [PubMed] [Google Scholar]
  3. ARTMAN M., BEKIERKUNST A. Studies on Mycobacterium tuberculosis H37RV grown in vivo. Am Rev Respir Dis. 1961 Jan;83:100–106. doi: 10.1164/arrd.1961.83.1.100. [DOI] [PubMed] [Google Scholar]
  4. BEKIERKUNST A., ARTMAN M. Tissue metabolism in infection. DPNase activity, DPN levels, and DPN-linked dehydrogenases in tissues from normal and tuberculous mice. Am Rev Respir Dis. 1962 Dec;86:832–838. doi: 10.1164/arrd.1962.86.6.832. [DOI] [PubMed] [Google Scholar]
  5. BLOCH H., SEGAL W. Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro. J Bacteriol. 1956 Aug;72(2):132–141. doi: 10.1128/jb.72.2.132-141.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CHAUDHURI S. N., SUTER E., SHAH N. S., MARTIN S. P. Metabolism in infection: study on the enzymatic damage in kidney of guinea pig infected with Mycobacterium tuberculosis. J Exp Med. 1963 Jan 1;117:71–79. doi: 10.1084/jem.117.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GOPINATHAN K. P., SIRSI M., RAMAKRISHNAN T. Nicotin-amide-adenine nucleotides of Mycobacterium tuberculosis H37Rv. Biochem J. 1963 May;87:444–448. doi: 10.1042/bj0870444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GREEN S., BODANSKY O. Effect of methylbis (beta-chloroethyl) amine (nitrogen mustard) on the diphosphopyridine nucleotidase activity of Ehrlich ascites cells and the role of this effect in glycolysis. J Biol Chem. 1962 Jun;237:1752–1757. [PubMed] [Google Scholar]
  9. Gopinathan K. P., Sirsi M., Vaidyanathan C. S. Nicotinamide-adenine dinucleotide glycohydrolase of Mycobacterium tuberculosis H37Rv. Biochem J. 1964 May;91(2):277–282. doi: 10.1042/bj0910277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. METHFESSELAHMUDAMBI S., HARPER A. E., FALCONE A. B. BIOCHEMICAL CHANGES IN FATTY LIVER INDUCED BY CHOLINE OR THREONINE DEFICIENCY. PART I. LEVELS OF INDIVIDUAL PYRIDINE NUCLEOTIDES. Arch Biochem Biophys. 1964 Mar;104:355–359. doi: 10.1016/0003-9861(64)90475-8. [DOI] [PubMed] [Google Scholar]
  12. SCAIFE J. F. Effect of ionizing radiation on the pyridine nucleotides of thymocytes. Can J Biochem Physiol. 1963 Jun;41:1469–1481. [PubMed] [Google Scholar]
  13. WINDMAN I., BEKIERKUNST A., ARTMAN M. PARTICULATE, SOLUBLE AND PLASMA NICOTINAMIDE-ADENINE DINUCLEOTIDE GLYCOHYDROLASE IN NORMAL AND TUBERCULOUS GUINEA-PIGS. Biochim Biophys Acta. 1964 Feb 10;82:405–408. doi: 10.1016/0304-4165(64)90315-0. [DOI] [PubMed] [Google Scholar]
  14. ZATMAN L. J., KAPLAN N. O., COLOWICK S. P., CIOTTI M. M. Effect of isonicotinic acid hydrazide on diphosphopyridine nucleotidases. J Biol Chem. 1954 Aug;209(2):453–466. [PubMed] [Google Scholar]
  15. ZATMAN L. J., KAPLAN N. O., COLOWICK S. P., CIOTTI M. M. The isolation and properties of the isonicotinic acid hydrazide analogue of diphosphopyridine nucleotide. J Biol Chem. 1954 Aug;209(2):467–484. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES