Abstract
Recombinational effects of the antimutator allele tsL42 of gene 43 of phage T4, encoding DNA polymerase, were studied in crosses between rIIB mutants. Recombination under tsL42-restricted conditions differed from the normal one in several respects: (1) basic recombination was enhanced, especially within very short distances; (2) mismatch repair tracts were shortened, while the contribution of mismatch repair to recombination was not changed; (3) marker interference at very short distances was augmented. We infer that the T4 DNA polymerase is directly involved in mismatch repair, performing both excision of a nonmatched single strand (by its 3' -> 5' exonuclease) and filling the resulting gap. A pathway for the mismatch repair was substantiated; it includes sequential action of endo VII (gp49) -> 3'->5' exonuclease (gp43) -> DNA polymerase (gp43) -> DNA ligase (gp30). It is argued that the marker interference at very short distances may result from the same sequence of events during the final processing of recombinational intermediates.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bautz F. A., Bautz E. K. Transformation in phage T4: minmal recognition length between donor and recipient DNA. Genetics. 1967 Dec;57(4):887–895. doi: 10.1093/genetics/57.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berger H., Benz W. C. Repair of heteroduplex DNA in bacteriophage T4. Basic Life Sci. 1975;5A:149–154. doi: 10.1007/978-1-4684-2895-7_19. [DOI] [PubMed] [Google Scholar]
- Bessman M. J., Muzyczka N., Goodman M. F., Schnaar R. L. Studies on the biochemical basis of spontaneous mutation. II. The incorporation of a base and its analogue into DNA by wild-type, mutator and antimutator DNA polymerases. J Mol Biol. 1974 Sep 15;88(2):409–421. doi: 10.1016/0022-2836(74)90491-4. [DOI] [PubMed] [Google Scholar]
- Broker T. R. An electron microscopic analysis of pathways for bacteriophage T4 DNA recombination. J Mol Biol. 1973 Nov 25;81(1):1–16. doi: 10.1016/0022-2836(73)90243-x. [DOI] [PubMed] [Google Scholar]
- Doermann A. H., Parma D. H. Recombination in bacteriophage T4. J Cell Physiol. 1967 Oct;70(2 Suppl):147–164. doi: 10.1002/jcp.1040700411. [DOI] [PubMed] [Google Scholar]
- Drake J. W. The length of the homologous pairing region for genetic recombination in bacteriophage T4. Proc Natl Acad Sci U S A. 1967 Sep;58(3):962–966. doi: 10.1073/pnas.58.3.962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Englund P. T. The initial step of in vitro synthesis of deoxyribonucleic acid by the T4 deoxyribonucleic acid polymerase. J Biol Chem. 1971 Sep 25;246(18):5684–5687. [PubMed] [Google Scholar]
- Fincham J. R., Holliday R. An explanation of fine structure map expansion in terms of excision repair. Mol Gen Genet. 1970;109(4):309–322. doi: 10.1007/BF00267701. [DOI] [PubMed] [Google Scholar]
- Friedberg E. C. Dark repair in bacteriophage systems: overview. Basic Life Sci. 1975;5A:125–133. doi: 10.1007/978-1-4684-2895-7_16. [DOI] [PubMed] [Google Scholar]
- Goldberg E. B. The amount of DNA between genetic markers in phage T4. Proc Natl Acad Sci U S A. 1966 Nov;56(5):1457–1463. doi: 10.1073/pnas.56.5.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodman M. F., Hopkins R. L., Lasken R., Mhaskar D. N. The biochemical basis of 5-bromouracil- and 2-aminopurine-induced mutagenesis. Basic Life Sci. 1985;31:409–423. doi: 10.1007/978-1-4613-2449-2_25. [DOI] [PubMed] [Google Scholar]
- Goulian M., Lucas Z. J., Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. XXV. Purification and properties of deoxyribonucleic acid polymerase induced by infection with phage T4. J Biol Chem. 1968 Feb 10;243(3):627–638. [PubMed] [Google Scholar]
- Hershfield M. S., Nossal N. G. Hydrolysis of template and newly synthesized deoxyribonucleic acid by the 3' to 5' exonuclease activity of the T4 deoxyribonucleic acid polymerase. J Biol Chem. 1972 Jun 10;247(11):3393–3404. [PubMed] [Google Scholar]
- Jensch F., Kemper B. Endonuclease VII resolves Y-junctions in branched DNA in vitro. EMBO J. 1986 Jan;5(1):181–189. doi: 10.1002/j.1460-2075.1986.tb04194.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kemper B., Brown D. T. Function of gene 49 of bacteriophage T4. II. Analysis of intracellular development and the structure of very fast-sedimenting DNA. J Virol. 1976 Jun;18(3):1000–1015. doi: 10.1128/jvi.18.3.1000-1015.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kemper B., Jensch F., von Depka-Prondzynski M., Fritz H. J., Borgmeyer U., Mizuuchi K. Resolution of Holliday structures by endonuclease VII as observed in interactions with cruciform DNA. Cold Spring Harb Symp Quant Biol. 1984;49:815–825. doi: 10.1101/sqb.1984.049.01.092. [DOI] [PubMed] [Google Scholar]
- Kleff S., Kemper B. Initiation of heteroduplex-loop repair by T4-encoded endonuclease VII in vitro. EMBO J. 1988 May;7(5):1527–1535. doi: 10.1002/j.1460-2075.1988.tb02972.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kodadek T., Wong M. L. Homologous pairing in vitro initiated by DNA synthesis. Biochem Biophys Res Commun. 1990 May 31;169(1):302–309. doi: 10.1016/0006-291x(90)91468-8. [DOI] [PubMed] [Google Scholar]
- Lo K. Y., Bessman M. J. An antimutator deoxyribonucleic acid polymerase. I. Purification and properties of the enzyme. J Biol Chem. 1976 Apr 25;251(8):2475–2479. [PubMed] [Google Scholar]
- Meselson M. S., Radding C. M. A general model for genetic recombination. Proc Natl Acad Sci U S A. 1975 Jan;72(1):358–361. doi: 10.1073/pnas.72.1.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller R. C., Jr T4 DNA polymerase (gene 43) is required in vivo for repair of gaps in recombinants. J Virol. 1975 Feb;15(2):316–321. doi: 10.1128/jvi.15.2.316-321.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minagawa T., Murakami A., Ryo Y., Yamagishi H. Structural features of very fast sedimenting DNA formed by gene 49 defective T4. Virology. 1983 Apr 15;126(1):183–193. doi: 10.1016/0042-6822(83)90470-1. [DOI] [PubMed] [Google Scholar]
- Mizuuchi K., Kemper B., Hays J., Weisberg R. A. T4 endonuclease VII cleaves holliday structures. Cell. 1982 Jun;29(2):357–365. doi: 10.1016/0092-8674(82)90152-0. [DOI] [PubMed] [Google Scholar]
- Mosig G., Ehring R., Schliewen W., Bock S. The patterns of recombination and segregation in terminal regions of T4DNA molecules. Mol Gen Genet. 1971;113(1):51–91. doi: 10.1007/BF00335007. [DOI] [PubMed] [Google Scholar]
- Ronen A., Halevy C. Recombination in phage T4 gene-43 (DNA polymerase) mutants. Mol Gen Genet. 1979 Jan 11;168(3):319–321. doi: 10.1007/BF00271502. [DOI] [PubMed] [Google Scholar]
- Ronen A., Salts Y. Genetic distances separating adjacent base pairs in bacteriophage T4. Virology. 1971 Aug;45(2):496–502. doi: 10.1016/0042-6822(71)90349-7. [DOI] [PubMed] [Google Scholar]
- Roth A. C., Nossal N. G., Englund P. T. Rapid hydrolysis of deoxynucleoside triphosphates accompanies DNA synthesis by T4 DNA polymerase and T4 accessory proteins 44/62 and 45. J Biol Chem. 1982 Feb 10;257(3):1267–1273. [PubMed] [Google Scholar]
- Shcherbakov V. P., Plugina L. A., Kudrashova E. A. Prostoi sposob opredeleniia parametra R(xi) polukhromatidnoi khiazmy. Genetika. 1980;16(6):967–974. [PubMed] [Google Scholar]
- Shcherbakov V. P., Plugina L. A. Marker-dependent recombination in T4 bacteriophage. III. Structural prerequisites for marker discrimination. Genetics. 1991 Aug;128(4):673–685. doi: 10.1093/genetics/128.4.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas C. A., Jr The rule of the ring. J Cell Physiol. 1967 Oct;70(2 Suppl):13–33. doi: 10.1002/jcp.1040700404. [DOI] [PubMed] [Google Scholar]
