Skip to main content
Genetics logoLink to Genetics
. 1995 May;140(1):183–192. doi: 10.1093/genetics/140.1.183

Genotypic Effects, Maternal Effects and Grand-Maternal Effects of Immobilized Derivatives of the Transposable Element Mariner

A R Lohe 1, D A Lidholm 1, D L Hartl 1
PMCID: PMC1206545  PMID: 7635283

Abstract

The baseline rate of spontaneous integration of the autonomous mariner element Mos1 into the germline of Drosophila melanogaster is estimated as 16 +/- 5% (mean +/- SE) among fertile G0 flies. However, the transformation rate is reduced ~20-fold in Mos1 constructs with exogenous DNA in the size range 5-12 kb inserted into the SacI site. To provide alternative Mos1 helper plasmids for transformation experiments, two types of Mos1-promoter fusions were constructed: hsp-70:Mos1 and hsp26-Sgs3:Mos1. The former has the Mos1 coding region driven by the hsp70 heat-shock promoter; the latter has it driven by the basal Sgs3 promoter under the control of the hsp26 female-germline specific transcriptional regulator. When introduced into D. melanogaster by P-element-mediated germline transformation, these elements are unable to transpose or excise in the presence of autonomous Mos1-related elements (they are ``marooned'') because the 5' inverted repeat of Mos1 is missing. As expected, the hsp26-Sgs3:Mos1 fusions exhibit a significantly greater rate of germline excision of a target mariner element than do the hsp70:Mos1 fusions. Unexpectedly, the rate of excision of target mariner elements induced by hsp26-Sgs3:Mos1 is the same in the male germline as in the female germline. Both hsp:Mos1 fusions show strong germline expression and a maternal effect of the mariner transposase. A significant grand-maternal effect of the hsp:Mos1 fusions was also detected as a result of a maternal effect on the germline of the F(1) progeny. Among flies carrying the promoter fusions inherited maternally, about three-quarters of the overall rate of germline excision derives from the direct genotypic effect and about one-quarter results from the grand-maternal effect. Despite the strong somatic expression of the hsp:Mos1 fusions, mariner transformants carrying a white(+) reporter gene at the SacI site remained stable in the soma.

Full Text

The Full Text of this article is available as a PDF (6.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bryan G. J., Hartl D. L. Maternally inherited transposon excision in Drosophila simulans. Science. 1988 Apr 8;240(4849):215–217. doi: 10.1126/science.2832948. [DOI] [PubMed] [Google Scholar]
  2. Bryan G. J., Jacobson J. W., Hartl D. L. Heritable somatic excision of a Drosophila transposon. Science. 1987 Mar 27;235(4796):1636–1638. doi: 10.1126/science.3029874. [DOI] [PubMed] [Google Scholar]
  3. Capy P., Koga A., David J. R., Hartl D. L. Sequence analysis of active mariner elements in natural populations of Drosophila simulans. Genetics. 1992 Mar;130(3):499–506. doi: 10.1093/genetics/130.3.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Capy P., Langin T., Bigot Y., Brunet F., Daboussi M. J., Periquet G., David J. R., Hartl D. L. Horizontal transmission versus ancient origin: mariner in the witness box. Genetica. 1994;93(1-3):161–170. doi: 10.1007/BF01435248. [DOI] [PubMed] [Google Scholar]
  5. Frank L. H., Cheung H. K., Cohen R. S. Identification and characterization of Drosophila female germ line transcriptional control elements. Development. 1992 Feb;114(2):481–491. doi: 10.1242/dev.114.2.481. [DOI] [PubMed] [Google Scholar]
  6. Garza D., Medhora M., Koga A., Hartl D. L. Introduction of the transposable element mariner into the germline of Drosophila melanogaster. Genetics. 1991 Jun;128(2):303–310. doi: 10.1093/genetics/128.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jacobson J. W., Medhora M. M., Hartl D. L. Molecular structure of a somatically unstable transposable element in Drosophila. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8684–8688. doi: 10.1073/pnas.83.22.8684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Karess R. E., Rubin G. M. Analysis of P transposable element functions in Drosophila. Cell. 1984 Aug;38(1):135–146. doi: 10.1016/0092-8674(84)90534-8. [DOI] [PubMed] [Google Scholar]
  9. Kidwell M. G. Evolutionary biology. Voyage of an ancient mariner. Nature. 1993 Mar 18;362(6417):202–202. doi: 10.1038/362202a0. [DOI] [PubMed] [Google Scholar]
  10. Lidholm D. A., Gudmundsson G. H., Boman H. G. A highly repetitive, mariner-like element in the genome of Hyalophora cecropia. J Biol Chem. 1991 Jun 25;266(18):11518–11521. [PubMed] [Google Scholar]
  11. Lidholm D. A., Lohe A. R., Hartl D. L. The transposable element mariner mediates germline transformation in Drosophila melanogaster. Genetics. 1993 Jul;134(3):859–868. doi: 10.1093/genetics/134.3.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Maruyama K., Hartl D. L. Evolution of the transposable element mariner in Drosophila species. Genetics. 1991 Jun;128(2):319–329. doi: 10.1093/genetics/128.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Maruyama K., Schoor K. D., Hartl D. L. Identification of nucleotide substitutions necessary for trans-activation of mariner transposable elements in Drosophila: analysis of naturally occurring elements. Genetics. 1991 Aug;128(4):777–784. doi: 10.1093/genetics/128.4.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Medhora M. M., MacPeek A. H., Hartl D. L. Excision of the Drosophila transposable element mariner: identification and characterization of the Mos factor. EMBO J. 1988 Jul;7(7):2185–2189. doi: 10.1002/j.1460-2075.1988.tb03057.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Medhora M., Maruyama K., Hartl D. L. Molecular and functional analysis of the mariner mutator element Mos1 in Drosophila. Genetics. 1991 Jun;128(2):311–318. doi: 10.1093/genetics/128.2.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pirrotta V., Steller H., Bozzetti M. P. Multiple upstream regulatory elements control the expression of the Drosophila white gene. EMBO J. 1985 Dec 16;4(13A):3501–3508. doi: 10.1002/j.1460-2075.1985.tb04109.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Robertson H. M. The mariner transposable element is widespread in insects. Nature. 1993 Mar 18;362(6417):241–245. doi: 10.1038/362241a0. [DOI] [PubMed] [Google Scholar]
  18. Steller H., Pirrotta V. P transposons controlled by the heat shock promoter. Mol Cell Biol. 1986 May;6(5):1640–1649. doi: 10.1128/mcb.6.5.1640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Steller H., Pirrotta V. Regulated expression of genes injected into early Drosophila embryos. EMBO J. 1984 Jan;3(1):165–173. doi: 10.1002/j.1460-2075.1984.tb01778.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES