Abstract
The baseline rate of spontaneous integration of the autonomous mariner element Mos1 into the germline of Drosophila melanogaster is estimated as 16 +/- 5% (mean +/- SE) among fertile G0 flies. However, the transformation rate is reduced ~20-fold in Mos1 constructs with exogenous DNA in the size range 5-12 kb inserted into the SacI site. To provide alternative Mos1 helper plasmids for transformation experiments, two types of Mos1-promoter fusions were constructed: hsp-70:Mos1 and hsp26-Sgs3:Mos1. The former has the Mos1 coding region driven by the hsp70 heat-shock promoter; the latter has it driven by the basal Sgs3 promoter under the control of the hsp26 female-germline specific transcriptional regulator. When introduced into D. melanogaster by P-element-mediated germline transformation, these elements are unable to transpose or excise in the presence of autonomous Mos1-related elements (they are ``marooned'') because the 5' inverted repeat of Mos1 is missing. As expected, the hsp26-Sgs3:Mos1 fusions exhibit a significantly greater rate of germline excision of a target mariner element than do the hsp70:Mos1 fusions. Unexpectedly, the rate of excision of target mariner elements induced by hsp26-Sgs3:Mos1 is the same in the male germline as in the female germline. Both hsp:Mos1 fusions show strong germline expression and a maternal effect of the mariner transposase. A significant grand-maternal effect of the hsp:Mos1 fusions was also detected as a result of a maternal effect on the germline of the F(1) progeny. Among flies carrying the promoter fusions inherited maternally, about three-quarters of the overall rate of germline excision derives from the direct genotypic effect and about one-quarter results from the grand-maternal effect. Despite the strong somatic expression of the hsp:Mos1 fusions, mariner transformants carrying a white(+) reporter gene at the SacI site remained stable in the soma.
Full Text
The Full Text of this article is available as a PDF (6.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bryan G. J., Hartl D. L. Maternally inherited transposon excision in Drosophila simulans. Science. 1988 Apr 8;240(4849):215–217. doi: 10.1126/science.2832948. [DOI] [PubMed] [Google Scholar]
- Bryan G. J., Jacobson J. W., Hartl D. L. Heritable somatic excision of a Drosophila transposon. Science. 1987 Mar 27;235(4796):1636–1638. doi: 10.1126/science.3029874. [DOI] [PubMed] [Google Scholar]
- Capy P., Koga A., David J. R., Hartl D. L. Sequence analysis of active mariner elements in natural populations of Drosophila simulans. Genetics. 1992 Mar;130(3):499–506. doi: 10.1093/genetics/130.3.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capy P., Langin T., Bigot Y., Brunet F., Daboussi M. J., Periquet G., David J. R., Hartl D. L. Horizontal transmission versus ancient origin: mariner in the witness box. Genetica. 1994;93(1-3):161–170. doi: 10.1007/BF01435248. [DOI] [PubMed] [Google Scholar]
- Frank L. H., Cheung H. K., Cohen R. S. Identification and characterization of Drosophila female germ line transcriptional control elements. Development. 1992 Feb;114(2):481–491. doi: 10.1242/dev.114.2.481. [DOI] [PubMed] [Google Scholar]
- Garza D., Medhora M., Koga A., Hartl D. L. Introduction of the transposable element mariner into the germline of Drosophila melanogaster. Genetics. 1991 Jun;128(2):303–310. doi: 10.1093/genetics/128.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson J. W., Medhora M. M., Hartl D. L. Molecular structure of a somatically unstable transposable element in Drosophila. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8684–8688. doi: 10.1073/pnas.83.22.8684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karess R. E., Rubin G. M. Analysis of P transposable element functions in Drosophila. Cell. 1984 Aug;38(1):135–146. doi: 10.1016/0092-8674(84)90534-8. [DOI] [PubMed] [Google Scholar]
- Kidwell M. G. Evolutionary biology. Voyage of an ancient mariner. Nature. 1993 Mar 18;362(6417):202–202. doi: 10.1038/362202a0. [DOI] [PubMed] [Google Scholar]
- Lidholm D. A., Gudmundsson G. H., Boman H. G. A highly repetitive, mariner-like element in the genome of Hyalophora cecropia. J Biol Chem. 1991 Jun 25;266(18):11518–11521. [PubMed] [Google Scholar]
- Lidholm D. A., Lohe A. R., Hartl D. L. The transposable element mariner mediates germline transformation in Drosophila melanogaster. Genetics. 1993 Jul;134(3):859–868. doi: 10.1093/genetics/134.3.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maruyama K., Hartl D. L. Evolution of the transposable element mariner in Drosophila species. Genetics. 1991 Jun;128(2):319–329. doi: 10.1093/genetics/128.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maruyama K., Schoor K. D., Hartl D. L. Identification of nucleotide substitutions necessary for trans-activation of mariner transposable elements in Drosophila: analysis of naturally occurring elements. Genetics. 1991 Aug;128(4):777–784. doi: 10.1093/genetics/128.4.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Medhora M. M., MacPeek A. H., Hartl D. L. Excision of the Drosophila transposable element mariner: identification and characterization of the Mos factor. EMBO J. 1988 Jul;7(7):2185–2189. doi: 10.1002/j.1460-2075.1988.tb03057.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Medhora M., Maruyama K., Hartl D. L. Molecular and functional analysis of the mariner mutator element Mos1 in Drosophila. Genetics. 1991 Jun;128(2):311–318. doi: 10.1093/genetics/128.2.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pirrotta V., Steller H., Bozzetti M. P. Multiple upstream regulatory elements control the expression of the Drosophila white gene. EMBO J. 1985 Dec 16;4(13A):3501–3508. doi: 10.1002/j.1460-2075.1985.tb04109.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson H. M. The mariner transposable element is widespread in insects. Nature. 1993 Mar 18;362(6417):241–245. doi: 10.1038/362241a0. [DOI] [PubMed] [Google Scholar]
- Steller H., Pirrotta V. P transposons controlled by the heat shock promoter. Mol Cell Biol. 1986 May;6(5):1640–1649. doi: 10.1128/mcb.6.5.1640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steller H., Pirrotta V. Regulated expression of genes injected into early Drosophila embryos. EMBO J. 1984 Jan;3(1):165–173. doi: 10.1002/j.1460-2075.1984.tb01778.x. [DOI] [PMC free article] [PubMed] [Google Scholar]