Abstract
The mechanism underlying trans-inactivation associated with dominant position effect variegation (PEV) of the Drosophila melanogaster brown gene has been addressed by a comparison with its D. virilis homologue. This comparison revealed: 86% identity between conceptual translation products of the brown gene from these two species, functional homology, as the D. virilis gene rescues a D. melanogaster null brown mutation, and conservation of the sequences required for trans-inactivation, as the D. virilis gene in D. melanogaster is subject to dominant PEV. An extended region of sequence similarity upstream of the open reading frame is observed. As the D. virilis homologue is functionally interchangeable with the D. melanogaster gene, these genes must share regulatory sequences as well as protein coding homology. These results support a model in which trans-inactivation is mediated by a heterochromatin-sensitive transcription factor.
Full Text
The Full Text of this article is available as a PDF (3.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beverley S. M., Wilson A. C. Molecular evolution in Drosophila and the higher Diptera II. A time scale for fly evolution. J Mol Evol. 1984;21(1):1–13. doi: 10.1007/BF02100622. [DOI] [PubMed] [Google Scholar]
- Bray S. J., Hirsh J. The Drosophila virilis dopa decarboxylase gene is developmentally regulated when integrated into Drosophila melanogaster. EMBO J. 1986 Sep;5(9):2305–2311. doi: 10.1002/j.1460-2075.1986.tb04498.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dreesen T. D., Henikoff S., Loughney K. A pairing-sensitive element that mediates trans-inactivation is associated with the Drosophila brown gene. Genes Dev. 1991 Mar;5(3):331–340. doi: 10.1101/gad.5.3.331. [DOI] [PubMed] [Google Scholar]
- Dreesen T. D., Johnson D. H., Henikoff S. The brown protein of Drosophila melanogaster is similar to the white protein and to components of active transport complexes. Mol Cell Biol. 1988 Dec;8(12):5206–5215. doi: 10.1128/mcb.8.12.5206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henikoff S., Eghtedarzadeh M. K. Conserved arrangement of nested genes at the Drosophila Gart locus. Genetics. 1987 Dec;117(4):711–725. doi: 10.1093/genetics/117.4.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henikoff S. Position-effect variegation after 60 years. Trends Genet. 1990 Dec;6(12):422–426. doi: 10.1016/0168-9525(90)90304-o. [DOI] [PubMed] [Google Scholar]
- Higgins C. F., Gallagher M. P., Mimmack M. L., Pearce S. R. A family of closely related ATP-binding subunits from prokaryotic and eukaryotic cells. Bioessays. 1988 Apr;8(4):111–116. doi: 10.1002/bies.950080406. [DOI] [PubMed] [Google Scholar]
- MacDonald P. M. bicoid mRNA localization signal: phylogenetic conservation of function and RNA secondary structure. Development. 1990 Sep;110(1):161–171. doi: 10.1242/dev.110.1.161. [DOI] [PubMed] [Google Scholar]
- Martin-Morris L. E., Loughney K., Kershisnik E. O., Poortinga G., Henikoff S. Characterization of sequences responsible for trans-inactivation of the Drosophila brown gene. Cold Spring Harb Symp Quant Biol. 1993;58:577–584. doi: 10.1101/sqb.1993.058.01.064. [DOI] [PubMed] [Google Scholar]
- Mismer D., Rubin G. M. Analysis of the promoter of the ninaE opsin gene in Drosophila melanogaster. Genetics. 1987 Aug;116(4):565–578. doi: 10.1093/genetics/116.4.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pabo C. O., Sauer R. T. Transcription factors: structural families and principles of DNA recognition. Annu Rev Biochem. 1992;61:1053–1095. doi: 10.1146/annurev.bi.61.070192.005201. [DOI] [PubMed] [Google Scholar]
- Pirrotta V., Rastelli L. White gene expression, repressive chromatin domains and homeotic gene regulation in Drosophila. Bioessays. 1994 Aug;16(8):549–556. doi: 10.1002/bies.950160808. [DOI] [PubMed] [Google Scholar]
- Reuter G., Spierer P. Position effect variegation and chromatin proteins. Bioessays. 1992 Sep;14(9):605–612. doi: 10.1002/bies.950140907. [DOI] [PubMed] [Google Scholar]
- Robertson H. M., Preston C. R., Phillis R. W., Johnson-Schlitz D. M., Benz W. K., Engels W. R. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics. 1988 Mar;118(3):461–470. doi: 10.1093/genetics/118.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schleif R. DNA looping. Annu Rev Biochem. 1992;61:199–223. doi: 10.1146/annurev.bi.61.070192.001215. [DOI] [PubMed] [Google Scholar]
- Schwartz S., Miller W., Yang C. M., Hardison R. C. Software tools for analyzing pairwise alignments of long sequences. Nucleic Acids Res. 1991 Sep 11;19(17):4663–4667. doi: 10.1093/nar/19.17.4663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Talbert P. B., LeCiel C. D., Henikoff S. Modification of the Drosophila heterochromatic mutation brownDominant by linkage alterations. Genetics. 1994 Feb;136(2):559–571. doi: 10.1093/genetics/136.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallrath L. L., Friedman T. B. Species differences in the temporal pattern of Drosophila urate oxidase gene expression are attributed to trans-acting regulatory changes. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5489–5493. doi: 10.1073/pnas.88.13.5489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yao K. M., White K. Organizational analysis of elav gene and functional analysis of ELAV protein of Drosophila melanogaster and Drosophila virilis. Mol Cell Biol. 1991 Jun;11(6):2994–3000. doi: 10.1128/mcb.11.6.2994. [DOI] [PMC free article] [PubMed] [Google Scholar]
