Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1965 Mar;94(3):755–759. doi: 10.1042/bj0940755

Biosynthesis of riboflavine by a purine-requiring mutant strain of Escherichia coli

D J Howells 1, G W E Plaut 1
PMCID: PMC1206612  PMID: 14340067

Abstract

1. Riboflavine biosynthesis occurs in non-proliferating cultures of a purine-requiring strain of Escherichia coli (ATCC no. 13863). 2. No significant incorporation of radioactivity from [1-14C]glycine into either C-4a and C-9a of riboflavine or into nucleic acid purines is detected under the above conditions; appreciable incorporation of label into 5-aminoimidazole-4-carboxamide occurs. However, the label of [6-14C]guanine is incorporated significantly into C-4 of riboflavine and into nucleic acid adenine and guanine; the specific radioactivity of the riboflavine is approximately twice that of either adenine or guanine of nucleic acid. 3. These results show that a purine derivative is an obligatory intermediate in riboflavine biogenesis.

Full text

PDF
755

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AUDLEY B. G., GOODWIN T. W. Studies on the biosynthesis of riboflavin. 7. The incorporation of adenine and guanine into riboflavin and into nucleic acid purines in Eremothecium ashbyii and Candida flareri. Biochem J. 1962 Sep;84:587–592. doi: 10.1042/bj0840587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. AVI-DOR Y., GONDA O. Studies on the adenosine triphosphate-phosphate exchange and the hydrolysis of adenosine triphosphate catalysed by a particulate fraction from the mosquito. Biochem J. 1959 May;72(1):8–14. doi: 10.1042/bj0720008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dent C. E. The amino-aciduria in Fanconi syndrome. A study making extensive use of techniques based on paper partition chromatography. Biochem J. 1947;41(2):240–253. doi: 10.1042/bj0410240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FLAKS J. G., ERWIN M. J., BUCHANAN J. M. Biosynthesis of the purines. XVIII. 5-Amino-1-ribosyl-4-imidazolecarboxamide 5'-phosphate transformylase and inosinicase. J Biol Chem. 1957 Dec;229(2):603–612. [PubMed] [Google Scholar]
  5. GOODWIN T. W., JONES O. T. Studies on the biosynthesis of riboflavin. 3. The utilization of 14C-labelled serine for riboflavin biosynthesis by Eremothecium ashbyii. Biochem J. 1956 Sep;64(1):9–13. doi: 10.1042/bj0640009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GOTS J. S. Purine metabolism in bacteria. V. Feed-back inhibition. J Biol Chem. 1957 Sep;228(1):57–66. [PubMed] [Google Scholar]
  7. LEPAGE G. A., HEIDELBERGER C. Incorporation of glycine-2-C14 into proteins and nucleic acids of the rat. J Biol Chem. 1951 Feb;188(2):593–602. [PubMed] [Google Scholar]
  8. LEVIN A. P., MAGASANIK B. The effect of purines on the formation of two enzymes involved in purine biosynthesis. J Biol Chem. 1961 Jan;236:184–188. [PubMed] [Google Scholar]
  9. LORING H. S., FAIRLEY J. L., BORTNER H. W., SEAGRAN H. L. A spectrophotometric method for the analysis of the purine and pyrimidine components of ribonucleic acid. J Biol Chem. 1952 May;197(2):809–821. [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. MCNUTT W. S., Jr The incorporation of the pyrimidine ring of adenine into the isoalloxazine ring of riboflavin. J Biol Chem. 1956 Mar;219(1):365–373. [PubMed] [Google Scholar]
  12. PLAUT G. W., BROBERG P. L. Biosynthesis of riboflavin. III. Incorporation of C14-labeled compounds into the ribityl side chain. J Biol Chem. 1956 Mar;219(1):131–138. [PubMed] [Google Scholar]
  13. PLAUT G. W. Biosynthesis of riboflavin. I. Incorporation of C14-labeled compounds into rings B and C. J Biol Chem. 1954 Jun;208(2):513–520. [PubMed] [Google Scholar]
  14. PLAUT G. W. Biosynthesis of riboflavin. II. Incorporation of C14-labeled compounds into ring A. J Biol Chem. 1954 Nov;211(1):111–116. [PubMed] [Google Scholar]
  15. PLAUT G. W. Studies on the nature of the nature of the nature of 6,7-dimethyl-8-ribityllumazine to riboflavin. J Biol Chem. 1963 Jun;238:2225–2243. [PubMed] [Google Scholar]
  16. WACKER H., HARVEY R. A., WINESTOCK C. H., PLAUT G. W. 4-(1'-D-RIBITYLAMINO)-5-AMINO-2,6-DIHYDROXYPYRIMIDINE, THE SECOND PRODUCT OF THE RIBOFLAVIN SYNTHETASE REACTION. J Biol Chem. 1964 Oct;239:3493–3497. [PubMed] [Google Scholar]
  17. WILSON A. C., PARDEE A. B. Regulation of flavin synthesis by Escherichia coli. J Gen Microbiol. 1962 Jun;28:283–303. doi: 10.1099/00221287-28-2-283. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES