Abstract
In wild-type crosses of the filamentous ascomycete Podospora anserina, after fertilization, only nuclei of opposite mating type can form dikaryons that undergo karyogamy and meiosis, producing biparental progeny. To determine the role played by the mating type in these steps, the four mat genes were mutagenized in vitro and introduced into a strain deleted for its mat locus. Genetic and cytological analyses of these mutant strains, crossed to each other and to wild type, showed that mating-type information is required for recognition of nuclear identity during the early steps of sexual reproduction. In crosses with strains carrying a mating-type mutation, two unusual developmental patterns were observed: monokaryotic cells, resulting in haploid meiosis, and uniparental dikaryotic cells providing, after karyogamy and meiosis, a uniparental progeny. Altered mating-type identity leads to selfish behavior of the mutant nucleus: it migrates alone or paired, ignoring its wild-type partner in all mutant X wild-type crosses. This behavior is nucleus-autonomous because, in the same cytoplasm, the wild-type nuclei form only biparental dikaryons. In P. anserina, mat genes are thus required to ensure a biparental dikaryotic state but appear dispensable for later stages, such as meiosis and sporulation.
Full Text
The Full Text of this article is available as a PDF (6.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Banuett F., Herskowitz I. Different a alleles of Ustilago maydis are necessary for maintenance of filamentous growth but not for meiosis. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5878–5882. doi: 10.1073/pnas.86.15.5878. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyer H. W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. doi: 10.1016/0022-2836(69)90288-5. [DOI] [PubMed] [Google Scholar]
- Camonis J. H., Cassan M., Rousset J. P. Of mice and yeast: versatile vectors which permit gene expression in both budding yeast and higher eukaryotic cells. Gene. 1990 Feb 14;86(2):263–268. doi: 10.1016/0378-1119(90)90288-3. [DOI] [PubMed] [Google Scholar]
- Coppin E., Arnaise S., Contamine V., Picard M. Deletion of the mating-type sequences in Podospora anserina abolishes mating without affecting vegetative functions and sexual differentiation. Mol Gen Genet. 1993 Nov;241(3-4):409–414. doi: 10.1007/BF00284694. [DOI] [PubMed] [Google Scholar]
- Debuchy R., Arnaise S., Lecellier G. The mat- allele of Podospora anserina contains three regulatory genes required for the development of fertilized female organs. Mol Gen Genet. 1993 Dec;241(5-6):667–673. doi: 10.1007/BF00279909. [DOI] [PubMed] [Google Scholar]
- Debuchy R., Coppin E. The mating types of Podospora anserina: functional analysis and sequence of the fertilization domains. Mol Gen Genet. 1992 May;233(1-2):113–121. doi: 10.1007/BF00587568. [DOI] [PubMed] [Google Scholar]
- Egel R., Nielsen O., Weilguny D. Sexual differentiation in fission yeast. Trends Genet. 1990 Nov;6(11):369–373. doi: 10.1016/0168-9525(90)90279-f. [DOI] [PubMed] [Google Scholar]
- Herskowitz I. A regulatory hierarchy for cell specialization in yeast. Nature. 1989 Dec 14;342(6251):749–757. doi: 10.1038/342749a0. [DOI] [PubMed] [Google Scholar]
- Horton J. S., Raper C. A. A mushroom-inducing DNA sequence isolated from the Basidiomycete, Schizophyllum commune. Genetics. 1991 Nov;129(3):707–716. doi: 10.1093/genetics/129.3.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lecellier G., Silar P. Rapid methods for nucleic acids extraction from Petri dish-grown mycelia. Curr Genet. 1994 Feb;25(2):122–123. doi: 10.1007/BF00309536. [DOI] [PubMed] [Google Scholar]
- Lu B. C. The course of meiosis and centriole behaviour during the ascus development of the ascomycete Gelasinospora calospora. Chromosoma. 1967;22(2):210–226. doi: 10.1007/BF00326730. [DOI] [PubMed] [Google Scholar]
- Marcou D., Picard M. Sur la structure d'un locus complexe chez le Podospora anserina: les relations entre la carte génétique et la carte de complémentation. C R Acad Sci Hebd Seances Acad Sci D. 1967 Dec 18;265(25):1962–1965. [PubMed] [Google Scholar]
- Picard M., Debuchy R., Coppin E. Cloning the mating types of the heterothallic fungus Podospora anserina: developmental features of haploid transformants carrying both mating types. Genetics. 1991 Jul;128(3):539–547. doi: 10.1093/genetics/128.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raff J. W., Glover D. M. Centrosomes, and not nuclei, initiate pole cell formation in Drosophila embryos. Cell. 1989 May 19;57(4):611–619. doi: 10.1016/0092-8674(89)90130-x. [DOI] [PubMed] [Google Scholar]
- Razanamparany V., Bégueret J. Non-homologous integration of transforming vectors in the fungus Podospora anserina: sequences of junctions at the integration sites. Gene. 1988 Dec 30;74(2):399–409. doi: 10.1016/0378-1119(88)90173-4. [DOI] [PubMed] [Google Scholar]
- Thompson-Coffe C., Zickler D. How the cytoskeleton recognizes and sorts nuclei of opposite mating type during the sexual cycle in filamentous ascomycetes. Dev Biol. 1994 Sep;165(1):257–271. doi: 10.1006/dbio.1994.1251. [DOI] [PubMed] [Google Scholar]
- Turgeon B. G., Bohlmann H., Ciuffetti L. M., Christiansen S. K., Yang G., Schäfer W., Yoder O. C. Cloning and analysis of the mating type genes from Cochliobolus heterostrophus. Mol Gen Genet. 1993 Apr;238(1-2):270–284. doi: 10.1007/BF00279556. [DOI] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
- Yasuda G. K., Baker J., Schubiger G. Independent roles of centrosomes and DNA in organizing the Drosophila cytoskeleton. Development. 1991 Feb;111(2):379–391. doi: 10.1242/dev.111.2.379. [DOI] [PubMed] [Google Scholar]
